27 research outputs found

    New Examples of Systems of the Kowalevski Type

    Full text link
    A new examples of integrable dynamical systems are constructed. An integration procedure leading to genus two theta-functions is presented. It is based on a recent notion of discriminantly separable polynomials. They have appeared in a recent reconsideration of the celebrated Kowalevski top, and their role here is analogue to the situation with the classical Kowalevski integration procedure.Comment: 17 page

    On integrable system on S2S^2 with the second integral quartic in the momenta

    Full text link
    We consider integrable system on the sphere S2S^2 with an additional integral of fourth order in the momenta. At the special values of parameters this system coincides with the Kowalevski-Goryachev-Chaplygin system.Comment: LaTeX, 6 page

    New variables of separation for particular case of the Kowalevski top

    Full text link
    We discuss the polynomial bi-Hamiltonian structures for the Kowalevski top in special case of zero square integral. An explicit procedure to find variables of separation and separation relations is considered in detail.Comment: 11 pages, LaTeX with Ams font

    Construction of Special Solutions for Nonintegrable Systems

    Full text link
    The Painleve test is very useful to construct not only the Laurent series solutions of systems of nonlinear ordinary differential equations but also the elliptic and trigonometric ones. The standard methods for constructing the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and a search for solutions of the obtained system. It has been demonstrated by the example of the generalized Henon-Heiles system that the use of the Laurent series solutions of the initial differential equation assists to solve the obtained algebraic system. This procedure has been automatized and generalized on some type of multivalued solutions. To find solutions of the initial differential equation in the form of the Laurent or Puiseux series we use the Painleve test. This test can also assist to solve the inverse problem: to find the form of a polynomial potential, which corresponds to the required type of solutions. We consider the five-dimensional gravitational model with a scalar field to demonstrate this.Comment: LaTeX, 14 pages, the paper has been published in the Journal of Nonlinear Mathematical Physics (http://www.sm.luth.se/math/JNMP/

    Lie point symmetries and first integrals: the Kowalevsky top

    Full text link
    We show how the Lie group analysis method can be used in order to obtain first integrals of any system of ordinary differential equations. The method of reduction/increase of order developed by Nucci (J. Math. Phys. 37, 1772-1775 (1996)) is essential. Noether's theorem is neither necessary nor considered. The most striking example we present is the relationship between Lie group analysis and the famous first integral of the Kowalevski top.Comment: 23 page

    Systems of Hess-Appel'rot type

    Full text link
    We construct higher-dimensional generalizations of the classical Hess-Appel'rot rigid body system. We give a Lax pair with a spectral parameter leading to an algebro-geometric integration of this new class of systems, which is closely related to the integration of the Lagrange bitop performed by us recently and uses Mumford relation for theta divisors of double unramified coverings. Based on the basic properties satisfied by such a class of systems related to bi-Poisson structure, quasi-homogeneity, and conditions on the Kowalevski exponents, we suggest an axiomatic approach leading to what we call the "class of systems of Hess-Appel'rot type".Comment: 40 pages. Comm. Math. Phys. (to appear

    Integrable systems on the sphere associated with genus three algebraic curves

    Full text link
    New variables of separation for few integrable systems on the two-dimensional sphere with higher order integrals of motion are considered in detail. We explicitly describe canonical transformations of initial physical variables to the variables of separation and vice versa, calculate the corresponding quadratures and discuss some possible integrable deformations of initial systems.Comment: 19 pages, LaTeX with AMS font
    corecore