6 research outputs found

    Comparative physical-tribological properties of anti-friction ion-plasma Ti-C-Mo-S coating on VT6 alloy or 20X13 and 40X steels

    Get PDF
    Results of comparative tests mechanical and tribological properties of solid antifriction Ti-C-Mo-S coating, deposited by magnetron-plasma combined sputtering method on substrates of VT6 titanium alloy, 40X and 20X13 hardened steels are provided. Coating is sputtered using the same conditions and technological regimes on substrates of different materials. However, the friction tests results showed significant difference in tribological characteristics of coating depending on type of material used for substrate, first of all by wear-resistance ability. Authors suppose that this is due to difference between physical properties such as composition and structure of substrate materials that determines hardness and coating adhesion to surface

    Comparative physical-tribological properties of anti-friction ion-plasma Ti-C-Mo-S coating on VT6 alloy or 20X13 and 40X steels

    Get PDF
    Results of comparative tests mechanical and tribological properties of solid antifriction Ti-C-Mo-S coating, deposited by magnetron-plasma combined sputtering method on substrates of VT6 titanium alloy, 40X and 20X13 hardened steels are provided. Coating is sputtered using the same conditions and technological regimes on substrates of different materials. However, the friction tests results showed significant difference in tribological characteristics of coating depending on type of material used for substrate, first of all by wear-resistance ability. Authors suppose that this is due to difference between physical properties such as composition and structure of substrate materials that determines hardness and coating adhesion to surface

    Study of stress relaxation in thermomechanical titanium nickelide-based junctions and methods for their reliability growth

    No full text
    The stress temporal changes were obtained due to the study of girth strength and energy dissipation in pipe thermomechanical junctions by nickelide titanium ferrule. The methods for their reliability growth were developed

    Energy dissipation and adhesive properties of quazi-hertz contact of shape memory materials

    No full text
    Energy dissipation in material contact determined by the hysteresis loop parameters was related to the adhesive interaction on physical contact areas at its cyclic compression. The features of forming loops in discrete contact of titanium nickelide bodies were mentioned
    corecore