5,823 research outputs found

    Voracious vortexes in cataclysmic variables. A multi-epoch tomographic study of HT Cassiopeia

    Full text link
    We present multi-epoch, time-resolved optical spectroscopic observations of the dwarf nova HT Cas, obtained during 1986, 1992, 1995 and 2005 with the aim to study the properties of emission structures in the system. We determined that the accretion disc radius, measured from the double-peaked emission line profiles, is persistently large and lies within the range of 0.45-0.52a, where a is the binary separation. This is close to the tidal truncation radius r_max=0.52a. This result contradicts with previous radius measurements. An extensive set of Doppler maps has revealed a very complex emission structure of the accretion disc. Apart from a ring of disc emission, the tomograms display at least three areas of enhanced emission: the hot spot from the area of interaction between the gas stream and the disc, which is superposed on the elongated spiral structure, and the extended bright region on the leading side of the disc, opposite to the location of the hot spot. The position of the hot spot in all the emission lines is consistent with the trajectory of the gas stream. However, the peaks of emission are located in the range of distances 0.22-0.30a, which are much closer to the white dwarf than the disc edge. This suggests that the outer disc regions have a very low density, allowing the gas stream to flow almost freely before it starts to be seen as an emission source. We have found that the extended emission region in the leading side of the disc is always observed at the very edge of the large disc. Observations of other cataclysmic variables, which show a similar emission structure in their tomograms, confirm this conclusion. We propose that the leading side bright region is caused by irradiation of tidally thickened sectors of the outer disc by the white dwarf and/or hot inner disc regions.Comment: 15 pages, 12 figures. Minor modifications to match version published by Astronomy & Astrophysic

    Coupling angle resolved photoemission data and quasiparticle structure in antiferromagnetic insulators Sr2CuO2Cl2 and Ca2CuO2Cl2

    Full text link
    We have analyzed the quasiparticle dispersion and ARPES-spectral density for Sr2CuO2Cl2 and Ca2CuO2Cl2 antiferromagnetic insulators along basic symmetric directions of the Brillouin zone (BZ) in a framework of an extended tight binding method (ETBM) with explicit account for intracell strong electron correlations. The quasiparticle dispersion is in a good agreement with ARPES- data. At the top of valence band we found a narrow impurity-like virtual level with the spectral weight proportional to the concentration of spin fluctuations. A pseudogap between the virtual level and the top of the valence band has dispersion similar to 'remnant Fermi surface' in Ca2CuO2Cl2 and to a pseudogap in the underdoped Bi2212 samples. A calculated parity of the polarized ARPES-spectra in (0,0),(pi/2,pi/2),(pi,0) - points in the AFM- phase is even with regard to relative magnitudes of the partial contributions by different orbitals to the total ARPES- spectral density. Conditions of an observability for the different partial contributions in the polarized ARPES- experiments are determined also.Comment: 15 pdf-pages with 10 figures and tabl
    • …
    corecore