7 research outputs found

    Swell and Shrinkage Characterizations of Unsaturated Expansive Clays from Texas

    Get PDF
    Expansive soils have long been recognized as problematic because they cause failure to civil structures constructed above them. The main problem of these soils can be attributed to poor understanding of the volume changes caused by moisture fluctuations. Current swell and shrinkage characterization models are limited by both the lack of standardized tests and tests that employ volume changes in uniaxial direction. In the present research, a comprehensive laboratory investigation was undertaken to study the volume change related swell–shrinkage behaviors of five different types of expansive clayey soils sampled from various regions in Texas, USA. Extensive experimental programs consisting of basic, chemical and mineralogical soil properties were first determined. Three-dimensional free swell and shrinkage tests were performed on all soils at various compaction moisture content conditions. Soil–water characteristic curves (SWCCs) of all test soils were determined by studying the suction potentials of these soils over a wide range of moisture contents. Volume change measurements of soils showed a good correlation with soil properties, including plasticity and soil compaction properties. SWCC results also showed a clear variation in SWCC profiles of soils with respect to soil plasticity. Overall, a large database of soil properties was developed and is presented here. It includes physical and mineralogical properties, as well as engineering swell, shrinkage and SWCC test results

    Swell and Shrinkage Strain Prediction Models for Expansive Clays

    Get PDF
    A comprehensive laboratory investigation was conducted to study volume change behaviors of five different types of expansive clayey soils sampled from various regions in Texas, USA. The laboratory test results, which were presented in an earlier paper, are analyzed here to evaluate existing correlations that can be used to predict swell and shrink-related displacements in these soils. The test database is also used to develop newer and practical models for predicting volume change-related soil properties. Models developed here used soil plasticity and compaction properties as independent variables. Newer models, that rely on seasonal compaction moisture content variations in the subsoils, were introduced to estimate both volumetric and vertical swell and shrinkage-induced soil deformations expected under civil infrastructure. The developed correlations, along with the existing models, were then used to predict vertical soil swell movements of four case studies where swell-induced soil movements were monitored. This comparison analysis showed that the model dependency on the volume change test procedural information and moisture content variation due to seasonal changes will lead to better prediction of swell movements in subsoils. Future research directions and recommendations are provided on implementation of the developed models in a realistic estimation of swell movements of infrastructure construction projects
    corecore