2,621 research outputs found

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    A generalized Finch-Skea class one static solution

    Full text link
    In the present article, we discuss relativistic anisotropic solutions of the Einstein field equation for the spherically symmetric line element under the class I condition. To do so we apply the embedding class one technique using Eisland condition. Within this approach, one arrives at a particular differential equation that links the two metric components eνe^{\nu} and eλe^{\lambda}. In order to obtain the full space-time description inside the stellar configuration we ansatz the generalized form of metric component grrg_{rr} corresponding to the Finch-Skea solution. Once the space-time geometry is specified we obtain the complete thermodynamic description i.e. the matter density ρ\rho, the radial, and tangential pressures prp_r and ptp_t, respectively. Graphical analysis shows that the obtained model respects the physical and mathematical requirements that all ultra-high dense collapsed structures must obey. The MRM-R diagram suggests that the solution yields stiffer EoS as parameter nn increases. The MIM-I graph is in agreement with the concepts of Bejgar et al. \cite{bej} that the mass at ImaxI_{max} is lesser by few percent (for this solution 3%\sim 3\%) from MmaxM_{max}. This suggests that the EoSs is without any strong high-density softening due to hyperonization or phase transition to an exotic state.Comment: 14 figures, Accepted in European Physical Journal

    Playing with Casimir in the vacuum sandbox

    Full text link
    The Casimir effect continues to be a subject of discussion regarding its relationship, or the lack of it, with the vacuum energy of fluctuating quantum fields. In this note, we propose a Gedankenexperiment considering an imaginary process similar to a vacuum fluctuation in a typical static Casimir set up. The thought experiment leads to intriguing conclusions regarding the minimum distance between the plates when approaching the Planck scale. More specifically, it is found that distance between the plates cannot reach a value below (L/LP)2/3(L/L_P)^{2/3} Planck lengths, being LPL_P the Planck length and LL the typical lateral extension of the plates. Additional findings allow the conclusion that the approach between the two plates towards this minimum separation distance is asymptotic

    Spillover and diffraction sidelobe contamination in a double-shielded experiment for mapping Galactic synchrotron emission

    Get PDF
    We have analyzed observations from a radioastronomical experiment to survey the sky at decimetric wavelengths along with feed pattern measurements in order to account for the level of ground contamination entering the sidelobes. A major asset of the experiment is the use of a wire mesh fence around the rim-halo shielded antenna with the purpose of levelling out and reducing this source of stray radiation for zenith-centered 1-rpm circular scans. We investigate the shielding performance of the experiment by means of a geometric diffraction model in order to predict the level of the spillover and diffraction sidelobes in the direction of the ground. Using 408 MHz and 1465 MHz feed measurements, the model shows how a weakly-diffracting and unshielded antenna configuration becomes strongly-diffracting and double-shielded as far-field diffraction effects give way to near-field ones. Due to the asymmetric response of the feeds, the orientation of their radiation fields with respect to the secondary must be known a priori before comparing model predictions with observational data. By adjusting the attenuation coefficient of the wire mesh the model is able to reproduce the amount of differential ground pick-up observed during test measurements at 1465 MHz.Comment: 14 pages, 17 eps + 1 gif figures and 4 Tables. Accepted for publication in A&AS. Fig.7 available at full resolution from http://www.das.inpe.br/~tello/publications.ht

    Extrinsic and intrinsic effects setting viscosity in life processes: implications for fundamental physical constants

    Full text link
    Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realised that fundamental constants have a bio-friendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the bio-friendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. We also find that the relative role of extrinsic and intrinsic factors depends on the range of variability of these intrinsic and extrinsic factors. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.Comment: arXiv admin note: text overlap with arXiv:2307.0527
    corecore