241 research outputs found

    Effect of Alkyl Chain Length and Linker Atom on the Crystal Packing in 6,12-Dialkoxy- And 6,12-Dialkylsulfanyl-Benzo[1,2- b:4,5- b′]bis[ b]benzothiophenes

    Get PDF
    The effect of varying the chain length on the solid state conformation and packing of 6,12-dialkoxy- and 6,12-dialkylsulfanyl-benzo[1,2-b:4,5-b′]bis[b]benzothiophenes has been studied. The compounds were prepared by SNAr reaction of 6,12-difluorbenzo[1,2-b:4,5-b′]bis[b]benzothiophene with alkoxides or alkanethiolates derived from C7-C10 alcohols and alkanethiols. Single crystal X-ray diffraction analysis revealed that all but two compounds crystallize in the triclinic space group P1. Two compounds were obtained as monoclinic crystals with space group P21/c. The alkoxy substituted compounds adopted a molecular conformation with a step from the core and a gauche conformation about the C1′-C2′ bond placing the alkyl chains close to parallel with the pentacyclic arene ring system, whereas in the alkylsufanyl derivatives, the alkyl chains were arranged strongly deviated from the plane of the ring, with the sulfur atom antiperiplanar to C3′ of the alkyl chain. NMR measurement of T1 relaxation in CDCl3 showed both the alkoxy and alkylsulfanyl substituents to be freely rotating at ambient temperature in solution, indicating the orientation of the chains in the solid state was due to packing interactions during crystallization

    A Most Unusual Zeolite Templating: Cage to Cage Connection of One Guest Molecule

    Get PDF
    An unusual case of a diquaternary ammonium dication, with large bulky end groups built from the tropane moiety and connected by a C4 methylene chain, is found to reside in zeolite SSZ-35 (STF). The structure of the guest/host product is such that the tropane bicylic entities reside in the shallow cavities of the cages of the STF structure and the C4 methylene chain runs through the 10-ring (~5.5 Å) window that connects the cages. This is a most unusual (and energy-intensive) templating of a zeolite structure with the guest molecule spanning two unit cells. The unusual result was found by single crystal studies with the addition of the use of the SQUEEZE program to show a consistent fit for the guest molecule following from measured electron densities in the crystal structure work. These analyses were followed with MAS NMR studies to confirm the integrity of the diquaternary guest molecule in the host sieve. A few comparative diquaternary guest molecules in MFI zeolite are also studied

    Engineering Lipophilic Aggregation of Adapalene and Adamantane-Based Cocrystals via van der Waals Forces and Hydrogen Bonding

    Get PDF
    Lipophilic aggregation using adamantanes is a widely exploited molecular property in medicinal and materials chemistry. Adamantanes are traditionally installed to molecular units via covalent bonds. However, the noncovalent installation of adamantanes has been relatively underexplored and presents the potential to bring properties associated with adamantanes to molecules without affecting their intrinsic properties (e.g., pharmacophores). Here, we systematically study a series of adamantanecarboxylic acids with varying substitution levels of methyl groups and their cocrystals with bipyridines. Specifically, single-crystal X-ray diffraction shows that while the directionality of single-component adamantanes is notably sensitive to changes in methyl substitution, hydrogen-bonded cocrystals with bipyridines show consistent and robust packing due to π-stacking predominance. Our observations are supported by Hirshfeld surface and energy framework analyses. The applicability of cocrystal formation of adamantanes bearing carboxylic acids was used to generate the first cocrystals of adapalene, an adamantane-bearing retinoid used for treating acne vulgaris. We envisage our study to inspire noncovalent (i.e., cocrystal) installation of adamantanes to generate lipophilic aggregation in multicomponent systems

    Infrared Optical Anisotropy in Quasi-1D Hexagonal Chalcogenide BaTiSe3

    Full text link
    Polarimetric infrared detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy was discovered in quasi-1D narrow-bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3[1,2] and Sr9/8TiS3[3,4]. In these materials, the critical role of atomic-scale structure modulations[4,5] in the unconventional electrical[5,6], optical[7,8], and thermal[7,9] properties raises the broader question of other materials that belong to this family. To address this issue, for the first time, we synthesized high-quality single crystals of a largely unexplored member of the A1+xTiX3 (X = S, Se) family, BaTiSe3. Single-crystal X-ray diffraction determined the room-temperature structure with the P31c space group, which is a superstructure of the earlier reported[10] P63/mmc structure. The crystal structure of BaTiSe3 features antiparallel c-axis displacements similar to BaTiS3,[2] but is of lower symmetry. Polarization-resolved Raman and Fourier transform infrared (FTIR) spectroscopy were used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (perpendicular to c) and extraordinary (parallel to c) optical axes was quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence {\Delta}n~0.9, BaTiSe3 emerges as a new candidate for miniaturized birefringent optics for mid-wave infrared to long-wave infrared imaging

    Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes

    Get PDF
    Graphene electrodes are promising candidates to improvereproducibility and stability in molecular electronics through new electrode−molecule anchoring strategies. Here we report sequentialelectron transport in few-layer graphene transistors containing individualcurcuminoid-based molecules anchored to the electrodes via π −π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule−electrode coupling; we argue that an intermediate electron−phononcoupling is the origin of these vibrational-assisted excitations. Theseexperimental observations are complemented with density functionaltheory calculations to model electron transport and the interaction between electrons and vibrational modes of thecurcuminoid molecule. We find that the calculated vibrational modes of the molecule are in agreement with theexperimentally observed excitation
    • …
    corecore