16 research outputs found

    On power corrections to the event shape distributions in QCD

    Full text link
    We study power corrections to the differential thrust, heavy jet mass and C-parameter distributions in the two-jet kinematical region in e^+e^- annihilation. We argue that away from the end-point region, e>> \Lambda_{QCD}/Q, the leading 1/Q-power corrections are parameterized by a single nonperturbative scale while for e \Lambda_{QCD}/Q one encounters a novel regime in which power corrections of the form 1/(Qe)^n have to be taken into account for arbitrary n. These nonperturbative corrections can be resummed and factor out into a universal nonperturbative distribution, the shape function, and the differential event shape distributions are given by convolution of the shape function with perturbative cross-sections. Choosing a simple ansatz for the shape function we demonstrate a good agreement of the obtained QCD predictions for the distributions and their lowest moments with the existing data over a wide energy interval.Comment: 18 pages, LaTeX style, 4 figure

    The Qt distribution of the Breit current hemisphere in DIS as a probe of small-x broadening effects

    Full text link
    We study the distribution 1/sigma dsigma/dQt, where Qt is the modulus of the transverse momentum vector, obtained by summing over all hadrons, in the current hemisphere of the DIS Breit frame. We resum the large logarithms in the small Qt region, to next-to--leading logarithmic accuracy, including the non-global logarithms involved. We point out that this observable is simply related to the Drell-Yan vector boson and predicted Higgs Qt spectra at hadron colliders. Comparing our predictions to existing HERA data thus ought to be a valuable source of information on the role or absence of small-x (BFKL) effects, neglected in conventional resummations of such quantities.Comment: 16 pages, 3 figures, uses JHEP3.cl

    Nonperturbative contributions to a resummed leptonic angular distribution in inclusive Z/γZ/\gamma^* boson production

    Full text link
    We summarize a new analysis of the distribution ϕη\phi_{\eta}^{*} of charged leptons produced in decays of ZZ and γ\gamma^{*} bosons in the Collins-Soper-Sterman (CSS) formalism for transverse momentum resummation. By comparing the ϕη\phi_{\eta}^{*} distribution measured at the Tevatron with the resummed CSS cross section with approximate O(αs2){\cal O}(\alpha_{s}^{2}) Wilson coefficients, we constrain the magnitude of the nonperturbative Gaussian smearing factor and analyze its uncertainty caused by variations in scale parameters. We find excellent agreement between the ϕη\phi_{\eta}^{*} data and our theoretical prediction, provided by the \textsc{ResBos} resummation program. The nonperturbative factor that we obtained can be used to update resummed QCD predictions for precision measurements in inclusive WW and ZZ production and for comparisons to various models of nonperturbative dynamics.Comment: 8 pages, 3 figures. Presented at conference: "The QCD Evolution Workshop", May 14-17 2012, Thomas Jefferson National Accelerator Facility, Newport News, V

    Instanton Contribution to the Quark Form Factor

    Full text link
    The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism. The properties of the Wilson loops with cusp singularities are studied taking into account the perturbative and nonperturbative contributions, where the latter are considered within the framework of the instanton liquid model. For the integration path corresponding to this form factor -- the angle with infinite sides -- the explicit expression for the vacuum expectation value of the Wilson operator is found to leading order. The calculations are performed in the weak-field limit for the instanton vacuum contribution and compared with the one- and two-loop order results for the perturbative part. It is shown that the instantons produce the powerlike corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1 figur

    Joint resummation in electroweak boson production

    Full text link
    We present a phenomenological application of the joint resummation formalism to electroweak annihilation processes at measured boson momentum Q_T. This formalism simultaneously resums at next-to-leading logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact parameter transform using a previously described analytic continuation procedure. This leads to a well-defined, resummed perturbative cross section for all nonzero Q_T, which can be compared to resummation carried out directly in Q_T space. From the structure of the resummed expressions, we also determine the form of nonperturbative corrections to the cross section and implement these into our analysis. We obtain a good description of the transverse momentum distribution of Z bosons produced at the Tevatron collider.Comment: 27 pages, LaTeX, 8 figures as eps files. Some additions to earlier version, this version as published in Phys. Rev. D66 (2002) 01401

    Instanton Corrections to Quark Form Factor at Large Momentum Transfer

    Get PDF
    Within the Wilson integral formalism, we discuss the structure of nonperturbative corrections to the quark form factor at large momentum transfer analyzing the infrared renormalon and instanton effects. We show that the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor and attribute their general structure to the renormalon ambiguities of the perturbative series. It is demonstrated that the instanton contributions result in the finite renormalization of the next-to-leading perturbative result and numerically are characterized by a small factor reflecting the diluteness of the QCD vacuum within the instanton liquid model.Comment: Version coincident with the journal publication, 9 pages; REVTe
    corecore