90 research outputs found

    Polycystic kidney diseases: From molecular discoveries to targeted therapeutic strategies

    Get PDF
    Polycystic kidney diseases (PKDs) represent a large group of progressive renal disorders characterized by the development of renal cysts leading to end-stage renal disease. Enormous strides have been made in understanding the pathogenesis of PKDs and the development of new therapies. Studies of autosomal dominant and recessive polycystic kidney diseases converge on molecular mechanisms of cystogenesis, including ciliary abnormalities and intracellular calcium dysregulation, ultimately leading to increased proliferation, apoptosis and dedifferentiation. Here we review the pathobiology of PKD, highlighting recent progress in elucidating common molecular pathways of cystogenesis. We discuss available models and challenges for therapeutic discovery as well as summarize the results from preclinical experimental treatments targeting key disease-specific pathways

    Sequence and localization of a partial cDNA encoding the human alpha 3 chain of type IV collagen.

    No full text
    A novel type IV collagen, alpha 3(IV), has recently been identified in human and bovine basement membranes. Here we describe the cloning and sequencing of a cDNA encoding 218 residues of the NC1 domain of the human alpha 3(IV) chain. Of interest is the possible role of abnormalities of the alpha 3(IV) chain in Alport syndrome, as suggested by the failure to detect the NC1 domain of alpha 3(IV) in the basement membranes of some Alport syndrome patients. To determine whether the alpha 3(IV) gene (COL4A3) may be mutated in Alport syndrome, we localized it, by somatic cell hybrid analysis and in situ hybridization of metaphase chromosomes, to chromosome 2q35-2q37. Mutations in alpha 3(IV) cannot therefore be responsible for the vast majority of cases of Alport syndrome, which have been shown to be X linked. One explanation for the immunochemical data implicating alpha 3(IV) in Alport syndrome pathogenesis is that mutations of the alpha 5(IV) chain, which has been localized to Xq22 and found to be mutated in at least three kindreds with Alport syndrome, lead to failure to incorporate the alpha 3(IV) chains into the multimeric structure of glomerular basement membrane in a stable fashion
    • …
    corecore