11 research outputs found

    The Fermi accelerator in atom optics

    Full text link
    We study the classical and quantum dynamics of a Fermi accelerator realized by an atom bouncing off a modulated atomic mirror. We find that in a window of the modulation amplitude dynamical localization occurs in both position and momentum. A recent experiment [A. Steane, P. Szriftgiser, P. Desbiolles, and J. Dalibard, Phys. Rev. Lett. {\bf 74}, 4972 (1995)] shows that this system can be implemented experimentally.Comment: 5 pages, 5 figure

    Thermodynamic properties of ferromagnetic mixed-spin chain systems

    Full text link
    Using a combination of high-temperature series expansion, exact diagonalization and quantum Monte Carlo, we perform a complementary analysis of the thermodynamic properties of quasi-one-dimensional mixed-spin systems with alternating magnetic moments. In addition to explicit series expansions for small spin quantum numbers, we present an expansion that allows a direct evaluation of the series coefficients as a function of spin quantum numbers. Due to the presence of excitations of both acoustic and optical nature, the specific heat of a mixed-spin chain displays a double-peak-like structure, which is more pronounced for ferromagnetic than for antiferromagnetic intra-chain exchange. We link these results to an analytically solvable half-classical limit. Finally, we extend our series expansion to incorporate the single-ion anisotropies relevant for the molecular mixed-spin ferromagnetic chain material MnNi(NO2_{2})4_{4}(ethylenediamine)2_{2}, with alternating spins of magnitude 5/2 and 1. Including a weak inter-chain coupling, we show that the observed susceptibility allows for an excellent fit, and the extraction of microscopic exchange parameters.Comment: 8 pages including 7 figures, submitted to Phys. Rev. B; series extended to 29th. QMC adde
    corecore