261 research outputs found

    Differences in cardiac geometry in relation to body size among neonates with abnormal prenatal growth and body size at birth

    Get PDF
    Objectives Both excessive and restricted fetal growth are associated with changes in cardiac geometry and function at birth. There are significant issues when indexing cardiac parameters for body size in the neonatal period. The aims of this study were to determine to what extent cardiac geometry is dependent on body size in term and preterm neonates with restricted or excessive fetal growth and how this is affected by adiposity. Methods This was a cross-sectional study of neonates born between 31 and 42 weeks of gestation, divided into three groups: (1) small-for-gestational age (SGA, birth weight > 2 SD below the mean); (2) large-for-gestational age (LGA, birth weight > 2 SD above the mean); and (3) appropriate-for-gestational-age controls (AGA, birth weight Results In total, 174 neonates were included, of which 39 were SGA, 45 were LGA and 90 were AGA. Body size was reflected in cardiac dimensions, with differences in cardiac dimensions disappearing between the SGA and AGA groups when indexed for body surface area (BSA) or thoracic circumference. The same was true for the differences in atrial and ventricular areas between the LGA and AGA groups. However, left ventricular inflow and outflow tract dimensions did not follow this trend as, when indexed for BSA, they were associated negatively with adiposity, resulting in diminished dimensions in LGA compared with AGA and SGA neonates. Adiposity was associated positively with left ventricular mass, right ventricular length and area and right atrial area. The SGA group showed increased right ventricular fractional area change, possibly reflecting differences in the systolic function of the right ventricle. We found evidence of altered diastolic function between the groups, with the mitral valve inflow E-to lateral E'-wave peak velocity ratio being increased in the LGA group and decreased in the SGA group. Conclusions Cardiac geometry is explained by body size in both term and preterm AGA and SGA infants. However, the nature of the relationship between body size and cardiac dimensions may be influenced by adiposity in LGA infants, leading to underestimation of left ventricular inflow and outflow tract dimensions when adjusted for BSA. Adjustments for thoracic circumference provide similar results to those for BSA. Copyright (C) 2020 ISUOG. Published by John Wiley & Sons Ltd.Peer reviewe

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure

    Exchange-correlation kernels for excited states in solids

    Full text link
    The performance of several common approximations for the exchange-correlation kernel within time-dependent density-functional theory is tested for elementary excitations in the homogeneous electron gas. Although the adiabatic local-density approximation gives a reasonably good account of the plasmon dispersion, systematic errors are pointed out and traced to the neglect of the wavevector dependence. Kernels optimized for atoms are found to perform poorly in extended systems due to an incorrect behavior in the long-wavelength limit, leading to quantitative deviations that significantly exceed the experimental error bars for the plasmon dispersion in the alkali metals.Comment: 7 pages including 5 figures, RevTe

    Anomalous Optoelectronic Properties of Chiral Carbon Nanorings...and One Ring to Rule Them All

    Get PDF
    Carbon nanorings are hoop-shaped, {\pi}-conjugated macrocycles which form the fundamental annular segments of single-walled carbon nanotubes (SWNTs). In a very recent report, the structures of chiral carbon nanorings (which may serve as chemical templates for synthesizing chiral nanotubes) were experimentally synthesized and characterized for the first time. Here, in our communication, we show that the excited-state properties of these unique chiral nanorings exhibit anomalous and extremely interesting optoelectronic properties, with excitation energies growing larger as a function of size (in contradiction with typical quantum confinement effects). While the first electronic excitation in armchair nanorings is forbidden with a weak oscillator strength, we find that the same excitation in chiral nanorings is allowed due to a strong geometric symmetry breaking. Most importantly, among all the possible nanorings synthesized in this fashion, we show that only one ring, corresponding to a SWNT with chiral indices (n+3,n+1), is extremely special with large photoinduced transitions that are most readily observable in spectroscopic experiments.Comment: Accepted by the Journal of Physical Chemistry Letter

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    Expressing ‘The Structure of’ in Homotopy Type Theory

    Get PDF
    As a new foundational language for mathematics with its very different idea as to the status of logic, we should expect homotopy type theory to shed new light on some of the problems of philosophy which have been treated by logic. In this article, definite description, and in particular its employment within mathematics, is formulated within the type theory. Homotopy type theory has been proposed as an inherently structuralist foundational language for mathematics. Using the new formulation of definite descriptions, opportunities to express ‘the structure of’ within homotopy type theory are explored, and it is shown there is little or no need for this expression

    Modified constraint-induced movement therapy or bimanual occupational therapy following injection of Botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomised controlled trial methods paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of Botulinum toxin-A (BoNT-A) for treatment of upper limb spasticity in children with cerebral palsy has become routine clinical practice in many paediatric treatment centres worldwide. There is now high-level evidence that upper limb BoNT-A injection, in combination with occupational therapy, improves outcomes in children with cerebral palsy at both the body function/structure and activity level domains of the International Classification of Functioning, Disability and Health. Investigation is now required to establish what amount and specific type of occupational therapy will further enhance functional outcomes and prolong the beneficial effects of BoNT-A.</p> <p>Methods/Design</p> <p>A randomised, controlled, evaluator blinded, prospective parallel-group trial. Eligible participants were children aged 18 months to 6 years, diagnosed with spastic hemiplegic cerebral palsy and who were able to demonstrate selective motor control of the affected upper limb. Both groups received upper limb injections of BoNT-A. Children were randomised to either the modified constraint-induced movement therapy group (experimental) or bimanual occupational therapy group (control). Outcome assessments were undertaken at pre-injection and 1, 3 and 6 months following injection of BoNT-A. The primary outcome measure was the Assisting Hand Assessment. Secondary outcomes included: the Quality of Upper Extremity Skills Test; Pediatric Evaluation of Disability Inventory; Canadian Occupational Performance Measure; Goal Attainment Scaling; Pediatric Motor Activity Log; modified Ashworth Scale and; the modified Tardieu Scale.</p> <p>Discussion</p> <p>The aim of this paper is to describe the methodology of a randomised controlled trial comparing the effects of modified constraint-induced movement therapy (a uni-manual therapy) versus bimanual occupational therapy (a bimanual therapy) on improving bimanual upper limb performance of children with hemiplegic cerebral palsy following upper limb injection of BoNT-A. The paper outlines the background to the study, the study hypotheses, outcome measures and trial methodology. It also provides a comprehensive description of the interventions provided.</p> <p>Trial Registration</p> <p>ACTRN12605000002684</p

    Self-trapping of excitons, violation of condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes

    Get PDF
    Cycloparaphenylenes, the simplest structural unit of armchair carbon nanotubes, have unique optoelectronic properties counterintuitive in the class of conjugated organic materials. Our time-dependent density functional theory study and excited state dynamics simulations of cycloparaphenylene chromophores provide a simple and conceptually appealing physical picture explaining experimentally observed trends in optical properties in this family of molecules. Fully delocalized degenerate second and third excitonic states define linear absorption spectra. Self-trapping of the lowest excitonic state due to electron-phonon coupling leads to the formation of spatially localized excitation in large cycloparaphenylenes within 100 fs. This invalidates the commonly used Condon approximation and breaks optical selection rules, making these materials superior fluorophores. This process does not occur in the small molecules, which remain inefficient emitters. A complex interplay of symmetry, π-conjugation, conformational distortion and bending strain controls all photophysics of cycloparaphenylenes.Fil: Adamska, Lyudmyla. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Nayyar, Iffat. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Chen, Hang. Boston University; Estados UnidosFil: Swan, Anna K.. Boston University; Estados UnidosFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; ArgentinaFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Golder, Matthew R.. University of Oregon; Estados UnidosFil: Jasti, Ramesh. University of Oregon; Estados UnidosFil: Doorn, Stephen K.. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory. Los Alamos; Estados Unido
    corecore