505 research outputs found
Improved BaBi4Ti4O15 Relaxor Ferroelectrics for FRAM Application
Bi-based Aurivillius family of compounds have received considerable attention as the materials for ferroelectric random access memory (FRAM) because of their low operating voltage, fast switching speed, large remnant polarization, low coercive field, superior polarization fatigue resistant characteristics and high Curie temperature. A large remnant polarization, low coercive field and high Curie temperature are required for better performance of FRAM devices. Majority of Aurivillius oxides are normal ferroelectrics, while only a few of them such as BaBi2Nb2O9, BaBi2Ta2O9, BaBi4Ti4O15 etc. exhibit relaxor behaviour. Relaxor ferroelectrics are attractive for a wide range of applications owing to their excellent high dielectric and piezoelectric responses over a wide range of temperatures. Ferroelectric properties of these compounds are often improved by chemical lattice site engineering. This is done by suitable atomic substitutions at ‘A’ and/or ‘B’ of the structure. Nb5+ substitution at ‘B’ site has been proved to be an most effective site engineering in 2 and 3 layered compounds. In the present study, Nb5+ has been substituted at ‘B’-site and Na1+ at ‘A’-site to compensate charge in the formulation Ba1-xNaxBi4Ti4-xNbxO15. Effect of the substitution on the structural, microstructural, dielectric and ferroelectric properties were evaluated. The AC complex impedance spectroscopy was used to analyze the change in dielectric conductivity of the ceramics. An improved permittivity, increased remnant polarization and decreased coercive field were found in the Nb-substituted compound
Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm
publisher: Elsevier articletitle: Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm journaltitle: Ocean Engineering articlelink: http://dx.doi.org/10.1016/j.oceaneng.2016.09.040 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved
Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture
The indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant\u27s response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined. Overall, the number of differentially expressed genes (DEGs) in Pokkali (indica) was higher than in Bengal (japonica) during low N and early N recovery treatments. Most low N DEGs in both genotypes were downregulated whereas early N recovery DEGs were upregulated. Of these, 148 Pokkali-specific DEGs might contribute to Pokkali\u27s advantage under N stress. These DEGs included transcription factors and transporters and were involved in stress responses, growth and development, regulation, and metabolism. Many DEGs are co-localized with quantitative trait loci (QTL) related to root growth and development, chlorate-resistance, and NUE. Our findings suggest that the superior growth performance of Pokkali under low N conditions could be due to the genetic differences in a diverse set of genes influencing N uptake through the regulation of root architecture
Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice
Flowering is a key agronomic trait that influences adaptation and productivity. Previous studies have indicated the genetic complexity associated with the flowering response in a photoinsensitive weedy rice accession PSRR-1 despite the presence of a photosensitive allele of a key flowering gene Hd1. In this study, we used whole-genome and RNA sequencing data from both cultivated and weedy rice to add further insights. The de novo assembly of unaligned sequences predicted 225 genes, in which 45 were specific to PSRR-1, including two genes associated with flowering. Comparison of the variants in PSRR-1 with the 3K rice genome (RG) dataset identified unique variants within the heading date QTLs. Analyses of the RNA-Seq result under both short-day (SD) and long-day (LD) conditions revealed that many differentially expressed genes (DEGs) colocalized with the flowering QTLs, and some DEGs such as Hd1, OsMADS56, Hd3a, and RFT1 had unique variants in PSRR-1. Ehd1, Hd1, OsMADS15, and OsMADS56 showed different alternate splicing (AS) events between genotypes and day length conditions. OsMADS56 was expressed in PSRR-1 but not in Cypress under both LD and SD conditions. Based on variations in both sequence and expression, the unique flowering response in PSRR-1 may be due to the high-impact variants of flowering genes, and OsMADS56 is proposed as a key regulator for its day-neutral flowering response
Recommended from our members
Life testing of a low voltage air circuit breaker
A DS-416 low voltage air circuit breaker manufactured by Westinghouse was mechanically cycled to identify age-related degradation in the various breaker subcomponents, specifically the power-operated mechanism. This accelerated aging test was performed on one breaker unit for over 36,000 cycles. Three separate pole shafts, one with a 60-degree weld, one with a 120-degree weld, and one with a 180-degree weld in the third pole lever were used to characterize cracking in the welds. In addition, during the testing three different operating mechanisms and several other parts were replaced as they became inoperable. Among the seven welds on the pole shaft, {number_sign}1 and {number_sign}3 were found to be critical ones whose fracture can result in misalignment of the pole levers. This can lead to problems with the operating mechanism, including the burning of coils, excessive wear in certain parts, and overstressed linkages. Furthermore, the limiting service life of a number of subcomponents of the power-operated mechanism, including the operating mechanism itself, were assessed. Based on these findings, suggestions are provided to alleviate the age-related degradation that could occur as a result of normal closing and opening of the breaker contacts during its service life. Also, cause and effect analyses of various age-related degradation in various breaker parts are discussed
An Insight in to Paget’s Disease of Bone
Paget’s disease of bone (PDB) is a common disorder which may affect one or many bones. Although many patients are asymptomatic, a variety of symptoms and complications may occur. PDB is a focal disorder of bone turnover characterized by excessive bone resorption coupled with bone formation. PDB begins with a period of increased osteoclastic activity and bone resorption, followed by increased osteoblast production of woven bone that is poorly mineralized. In the final phase of the disease process, dense cortical and trabecular bone deposition predominates, but the bone is sclerotic and poorly organized and lacks the structural integrity and strength of normal bone. This article briefly reviews the etiopathogenesis, clinical radiographic and histological features of Paget’s disease.Keywords: Osteoclast, osteoprotegerin, receptor activator of NF‑kB, receptor activator of NF‑kB ligan
A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice (Oryza sativa L.)
Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways
Recommended from our members
The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations
This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well
Association Between Use of Tobacco and Age on Graying of Hair
Aims and Objectives: To determine the association between smoking, chewing tobacco (gutka), and age of individual on graying of hair. Materials and Methods: The present study was conducted on 120 patients attending the Outpatient Department of the DJ College of Dental Sciences and Research, Modinagar, UP. The individuals were classified into four groups (group I, II, III, IV) on the basis of the form of tobacco use (smoking or chewing). The Pearson correlation coefficient was utilized to find the correlation between the mean percentage of individuals with gray hair, risk multiplication factor (RMF), and age of the individual. Results: Mean percentage of individual with gray hair and RMF (r = 0.6487) are found to be positively associated. A significant and positive correlation was observed between the age of the individual and the frequency of individuals with gray hair. Conclusion: This study suggests that there is a significant association between tobacco use and aging on graying of hair.Keywords: Graying of hair, risk multiplication factor, smokin
- …