1,254 research outputs found
Rings and spirals in barred galaxies. I Building blocks
In this paper we present building blocks which can explain the formation and
properties both of spirals and of inner and outer rings in barred galaxies. We
first briefly summarise the main results of the full theoretical description we
have given elsewhere, presenting them in a more physical way, aimed to an
understanding without the requirement of extended knowledge of dynamical
systems or of orbital structure. We introduce in this manner the notion of
manifolds, which can be thought of as tubes guiding the orbits. The dynamics of
these manifolds can govern the properties of spirals and of inner and outer
rings in barred galaxies. We find that the bar strength affects how unstable
the L1 and L2 Lagrangian points are, the motion within the 5A5A5Amanifold tubes
and the time necessary for particles in a manifold to make a complete turn
around the galactic centre. We also show that the strength of the bar, or, to
be more precise, of the non-axisymmetric forcing at and somewhat beyond the
corotation region, determines the resulting morphology. Thus, less strong bars
give rise to R1 rings or pseudorings, while stronger bars drive R2, R1R2 and
spiral morphologies. We examine the morphology as a function of the main
parameters of the bar and present descriptive two dimensional plots to that
avail. We also derive how the manifold morphologies and properties are modified
if the L1 and L2 Lagrangian points become stable. Finally, we discuss how
dissipation affects the manifold properties and compare the manifolds in
gas-like and in stellar cases. Comparison with observations, as well as clear
predictions to be tested by observations will be given in an accompanying
paper.Comment: Typos corrected to match the version in press in MNRA
Abelian Higgs Cosmic Strings: Small Scale Structure and Loops
Classical lattice simulations of the Abelian Higgs model are used to
investigate small scale structure and loop distributions in cosmic string
networks. Use of the field theory ensures that the small-scale physics is
captured correctly. The results confirm analytic predictions of Polchinski &
Rocha [1] for the two-point correlation function of the string tangent vector,
with a power law from length scales of order the string core width up to
horizon scale with evidence to suggest that the small scale structure builds up
from small scales. An analysis of the size distribution of string loops gives a
very low number density, of order 1 per horizon volume, in contrast with
Nambu-Goto simulations. Further, our loop distribution function does not
support the detailed analytic predictions for loop production derived by Dubath
et al. [2]. Better agreement to our data is found with a model based on loop
fragmentation [3], coupled with a constant rate of energy loss into massive
radiation. Our results show a strong energy loss mechanism which allows the
string network to scale without gravitational radiation, but which is not due
to the production of string width loops. From evidence of small scale structure
we argue a partial explanation for the scale separation problem of how energy
in the very low frequency modes of the string network is transformed into the
very high frequency modes of gauge and Higgs radiation. We propose a picture of
string network evolution which reconciles the apparent differences between
Nambu-Goto and field theory simulations.Comment: 16 pages, 17 figure
Using the Uncharged Kerr Black Hole as a Gravitational Mirror
We extend the study of the possibility to use the Schwarzschild black hole as
a gravitational mirror to the more general case of an uncharged Kerr black
hole. We use the null geodesic equation in the equatorial plane to prove a
theorem concerning the conditions the impact parameter has to satisfy if there
shall exist boomerang photons. We derive an equation for these boomerang
photons and an equation for the emission angle. Finally, the radial null
geodesic equation is integrated numerically in order to illustrate boomerang
photons.Comment: 11 pages Latex, 3 Postscript figures, uufiles to compres
SRB Environment Evaluation and Analysis. Volume 3: ASRB Plume Induced Environments
Contract NAS8-37891 was expanded in late 1989 to initiate analysis of Shuttle plume induced environments as a result of the substitution of the Advanced Solid Rocket Booster (ASRB) for the Redesigned Solid Rocket Booster (RSRB). To support this analysis, REMTECH became involved in subscale and full-scale solid rocket motor test programs which further expanded the scope of work. Later contract modifications included additional tasks to produce initial design cycle environments and to specify development flight instrumentation. Volume 3 of the final report describes these analyses and contains a summary of reports resulting from various studies
How precise are reported protein coordinate data?
Atomic coordinates in the Worldwide Protein Data Bank (wwPDB) are generally reported to greater precision than the experimental structure determinations have actually achieved. By using information theory and data compression to study the compressibility of protein atomic coordinates, it is possible to quantify the amount of randomness in the coordinate data and thereby to determine the realistic precision of the reported coordinates. On average, the value of each Cα coordinate in a set of selected protein structures solved at a variety of resolutions is good to about 0.1 Å
The divergence time of protein structures modelled by Markov matrices and its relation to the divergence of sequences
A complete time-parameterized statistical model quantifying the divergent
evolution of protein structures in terms of the patterns of conservation of
their secondary structures is inferred from a large collection of protein 3D
structure alignments. This provides a better alternative to time-parameterized
sequence-based models of protein relatedness, that have clear limitations
dealing with twilight and midnight zones of sequence relationships. Since
protein structures are far more conserved due to the selection pressure
directly placed on their function, divergence time estimates can be more
accurate when inferred from structures. We use the Bayesian and
information-theoretic framework of Minimum Message Length to infer a
time-parameterized stochastic matrix (accounting for perturbed structural
states of related residues) and associated Dirichlet models (accounting for
insertions and deletions during the evolution of protein domains). These are
used in concert to estimate the Markov time of divergence of tertiary
structures, a task previously only possible using proxies (like RMSD). By
analyzing one million pairs of homologous structures, we yield a relationship
between the Markov divergence time of structures and of sequences. Using these
inferred models and the relationship between the divergence of sequences and
structures, we demonstrate a competitive performance in secondary structure
prediction against neural network architectures commonly employed for this
task. The source code and supplementary information are downloadable from
\url{http://lcb.infotech.monash.edu.au/sstsum}.Comment: 12 pages, 6 figure
Working group written presentation: Trapped radiation effects
The results of the Trapped Radiation Effects Panel for the Space Environmental Effects on Materials Workshop are presented. The needs of the space community for new data regarding effects of the space environment on materials, including electronics are listed. A series of questions asked of each of the panels at the workshop are addressed. Areas of research which should be pursued to satisfy the requirements for better knowledge of the environment and better understanding of the effects of the energetic charged particle environment on new materials and advanced electronics technology are suggested
- …