22 research outputs found

    Massive charged particle's tunneling from spherical charged black hole

    Full text link
    We generalize the Parikh-Wilczek scheme to the tunneling of a massive charged particle from a general spherical charged black hole. We obtain that the tunneling probability depends on the energy, the mass and the charge of the particle. In particular, the modified Hawking temperature is related to the charge. Only at the leading order approximation can the standard Hawking temperature be reproduced. We take the Reissner-Nordstr\"{o}m black hole as an example to clarify our points of view, and find that the accumulation of Hawking radiation makes it approach an extreme black hole.Comment: 10 pages, no figures; v2: a minor typo corrected; v3: 11 pages, clarification and reference added, final version to be published in EPL; v4: minor modifications to match the published versio

    On tunneling across horizons

    Full text link
    The tunneling method for stationary black holes in the Hamilton-Jacobi variant is reconsidered in the light of various critiques that have been moved against. It is shown that once the tunneling trajectories have been correctly identified the method isfree from internal inconsistencies, it is manifestly covariant, it allows for the extension to spinning particles and it can even be used without solving the Hamilton-Jacobi equation. These conclusions borrow support on a simple analytic continuation of the classical action of a pointlike particle, made possible by the unique assumption that it should be analytic in complexified Schwarzschild or Kerr-Newman spacetimes. A more general version of the Parikh-Wilczek method will also be proposed along these lines.Comment: Latex Document, 5 pages, 2 figures, title changed, abstract changed, added references, results unchange

    Glassy Phase Transition and Stability in Black Holes

    Full text link
    Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest's scheme we further prove that this is a glassy phase transition with a Prigogine-Defay ratio close to 3. This value is well placed within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.Comment: v3, minor changes over v2, references added, LaTeX-2e, 18 pages, 3 ps figures, to appear in Eour. Phys. Jour.

    A 43-GHz Survey in the ELAIS N2 Area

    Full text link
    We describe a survey in the ELAIS N2 region with the VLA at 43.4 GHz, carried out with 1627 independent snapshot observations in D-configuration and covering about 0.5 square degrees. One certain source is detected, a previously-catalogued flat-spectrum QSO at z=2.2. A few (<5) other sources may be present at about the 3sigma level, as determined from positions of source-like deflections coinciding with blue stellar objects, or with sources from lower-frequency surveys. Independently we show how all the source-like detections identified in the data can be used with a maximum-likelihood technique to constrain the 43-GHz source counts at a level of ~7 mJy. Previous estimates of the counts at 43 GHz, based on lower-frequency counts and spectral measurements, are consistent with these constraints, although the present results are suggestive of somewhat higher surface densities at the 7 mJy level. They do not provide direct evidence of intrusion of a previously unknown source population, although the several candidate sources need examination before such a population can be ruled out.Comment: 13 pages, 11 figures, 1 table; accepted for publication in Mon. Not R. Astr. So

    Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling

    Full text link
    We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking radiation in static, spherically-symmetric spacetimes by explicitly incorporating a preferred family of frames. These frames correspond to a family of observers tied to a locally static timelike Killing vector of the spacetime. This formulation separates the role of the coordinates from the choice of vacuum and thus provides a coordinate-independent formulation of the tunneling method. In addition, it clarifies the nature of certain constants and their relation to these preferred observers in the calculation of horizon temperatures. We first use this formalism to obtain the expected temperature for a static observer at finite radius in the Schwarzschild spacetime. We then apply this formalism to the Schwarzschild-de Sitter spacetime, where there is no static observer with 4-velocity equal to the static timelike Killing vector. It is shown that a preferred static observer, one whose trajectory is geodesic, measures the lowest temperature from each horizon. Furthermore, this observer measures horizon temperatures corresponding to the well-known Bousso-Hawking normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added, discussion streamline

    Fermions and Kaluza-Klein vacuum decay: a toy model

    Full text link
    We address the question of whether or not fermions with twisted periodicity condition suppress the semiclassical decay of M^4xS^1 Kaluza--Klein vacuum. We consider a toy (1+1)-dimensional model with twisted fermions in cigar-shaped Euclidean background geometry and calculate the fermion determinant. We find that contrary to expectations, the determinant is finite. We consider this as an indication that twisted fermions do not stabilize the Kaluza--Klein vacuum.Comment: 13 pages, 2 figure

    Hamilton-Jacobi Tunneling Method for Dynamical Horizons in Different Coordinate Gauges

    Full text link
    Previous work on dynamical black hole instability is further elucidated within the Hamilton-Jacobi method for horizon tunneling and the reconstruction of the classical action by means of the null-expansion method. Everything is based on two natural requirements, namely that the tunneling rate is an observable and therefore it must be based on invariantly defined quantities, and that coordinate systems which do not cover the horizon should not be admitted. These simple observations can help to clarify some ambiguities, like the doubling of the temperature occurring in the static case when using singular coordinates, and the role, if any, of the temporal contribution of the action to the emission rate. The formalism is also applied to FRW cosmological models, where it is observed that it predicts the positivity of the temperature naturally, without further assumptions on the sign of the energy.Comment: Standard Latex document, typos corrected, refined discussion of tunneling picture, subsection 5.1 remove

    A General Black String and its Microscopics

    Get PDF
    Using G2(2) dualities we construct the most general black string solution of minimal five-dimensional ungauged supergravity. The black string has five independent parameters, namely, the magnetic one-brane charge, smeared electric zero-brane charge, boost along the string direction, energy above the BPS bound, and rotation in the transverse space. In one extremal limit it reduces to the three parameter supersymmetric string of five-dimensional minimal supergravity; in another extremal limit it reduces to the three parameter non-supersymmetric extremal string of five-dimensional minimal supergravity. It also admits an extremal limit when it has maximal rotation in the four-dimensional transverse space. The decoupling limit of our general black string is a BTZ black hole times a two sphere. The macroscopic entropy of the string is reproduced by the Maldacena-Strominger-Witten CFT in appropriate ranges of the parameters. When the pressureless condition is imposed, our string describes the infinite radius limit of the most general class of black rings of minimal supergravity. We discuss implications our solution has for extremal and non-extremal black rings of minimal supergravity.Comment: 35 pages; 3 figures; v2 section 4.1.1 rewritten + minor changes + ref adde

    Shaping black holes with free fields

    Get PDF
    Starting from a metric Ansatz permitting a weak version of Birkhoff's theorem we find static black hole solutions including matter in the form of free scalar and p-form fields, with and without a cosmological constant \Lambda. Single p-form matter fields permit multiple possibilities, including dyonic solutions, self-dual instantons and metrics with Einstein-Kaelher horizons. The inclusion of multiple p-forms on the other hand, arranged in a homogeneous fashion with respect to the horizon geometry, permits the construction of higher dimensional dyonic p-form black holes and four dimensional axionic black holes with flat horizons, when \Lambda<0. It is found that axionic fields regularize black hole solutions in the sense, for example, of permitting regular -- rather than singular -- small mass Reissner-Nordstrom type black holes. Their cosmic string and Vaidya versions are also obtained.Comment: 38 pages. v2: minor changes, published versio

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201
    corecore