6,029 research outputs found
Symmetric vortices for two-component Ginzburg-Landau systems
We study Ginzburg--Landau equations for a complex vector order parameter
Psi=(psi_+,psi_-). We consider symmetric (equivariant) vortex solutions in the
plane R^2 with given degrees n_\pm, and prove existence, uniqueness, and
asymptotic behavior of solutions for large r. We also consider the monotonicity
properties of solutions, and exhibit parameter ranges in which both vortex
profiles |psi_+|, |psi_i| are monotone, as well as parameter regimes where one
component is non-monotone. The qualitative results are obtained by means of a
sub- and supersolution construction and a comparison theorem for elliptic
systems.Comment: 32 page
Quantum measure and integration theory
This article begins with a review of quantum measure spaces. Quantum forms
and indefinite inner-product spaces are then discussed. The main part of the
paper introduces a quantum integral and derives some of its properties. The
quantum integral's form for simple functions is characterized and it is shown
that the quantum integral generalizes the Lebesgue integral. A bounded,
monotone convergence theorem for quantum integrals is obtained and it is shown
that a Radon-Nikodym type theorem does not hold for quantum measures. As an
example, a quantum-Lebesgue integral on the real line is considered.Comment: 28 page
Dimensional Crossover of Dilute Neon inside Infinitely Long Single-Walled Carbon Nanotubes Viewed from Specific Heats
A simple formula for coordinates of carbon atoms in a unit cell of a
single-walled nanotube (SWNT) is presented and the potential of neon (Ne)
inside an infinitely long SWNT is analytically derived under the assumption of
pair-wise Lennard-Jones potential between Ne and carbon atoms. Specific heats
of dilute Ne inside infinitely long (5, 5), (10, 10), (15, 15) and (20, 20)
SWNT's are calculated at different temperatures. It is found that Ne inside
four kinds of nanotubes exhibits 3-dimensional (3D) gas behavior at high
temperature but different behaviors at low temperature: Ne inside (5, 5)
nanotube behaves as 1D gas but inside (10, 10), (15, 15), and (20, 20)
nanotubes behaves as 2D gas. Furthermore, at ultra low temperature, Ne inside
(5, 5) nanotube still displays 1D behavior but inside (10, 10), (15, 15), and
(20, 20) nanotubes behaves as lattice gas.Comment: 10 pages, 5 figure
LIDA: A Working Model of Cognition
In this paper we present the LIDA architecture as a working model of cognition. We argue that such working models are broad in scope and address real world problems in comparison to experimentally based models which focus on specific pieces of cognition. While experimentally based models are useful, we need a working model of cognition that integrates what we know from neuroscience, cognitive science and AI. The LIDA architecture provides such a working model. A LIDA based cognitive robot or software agent will be capable of multiple learning mechanisms. With artificial feelings and emotions as primary motivators and learning facilitators, such systems will ‘live’ through a developmental period during which they will learn in multiple ways to act in an effective, human-like manner in complex, dynamic, and unpredictable environments. We discuss the integration of the learning mechanisms into the existing IDA architecture as a working model of cognition
Quasi one dimensional He inside carbon nanotubes
We report results of diffusion Monte Carlo calculations for both He
absorbed in a narrow single walled carbon nanotube (R = 3.42 \AA) and strictly
one dimensional He. Inside the tube, the binding energy of liquid He is
approximately three times larger than on planar graphite. At low linear
densities, He in a nanotube is an experimental realization of a
one-dimensional quantum fluid. However, when the density increases the
structural and energetic properties of both systems differ. At high density, a
quasi-continuous liquid-solid phase transition is observed in both cases.Comment: 11 pages, 3ps figures, to appear in Phys. Rev. B (RC
Quasi-one and two-dimensional transitions of gases adsorbed on nanotube bundles
Grand canonical Monte Carlo simulations have been performed to determine the
adsorption behavior of Ar and Kr atoms on the exterior surface of a rope
(bundle) consisting of many carbon nanotubes. The computed adsorption isotherms
reveal phase transitions associated with the successive creation of quasi-one
dimensional lines of atoms near and parallel to the intersection of two
adjacent nanotubes.Comment: 12 pages, 6 figures, submitted to J. Chem. Phy
Rectification by charging -- the physics of contact-induced current asymmetry in molecular conductors
We outline the qualitatively different physics behind charging-induced
current asymmetries in molecular conductors operating in the weakly interacting
self-consistent field (SCF) and the strongly interacting Coulomb Blockade (CB)
regimes. A conductance asymmetry arises in SCF because of the unequal
mean-field potentials that shift a closed-shell conducting level differently
for positive and negative bias. A very different current asymmetry arises for
CB due to the unequal number of open-shell excitation channels at opposite bias
voltages. The CB regime, dominated by single charge effects, typically requires
a computationally demanding many-electron or Fock space description. However,
our analysis of molecular Coulomb Blockade measurements reveals that many novel
signatures can be explained using a {{simpler}} orthodox model that involves an
incoherent sum of Fock space excitations and {\it{hence treats the molecule as
a metallic dot or an island}}. This also reduces the complexity of the Fock
space description by just including various charge configurations only, thus
partially underscoring the importance of electronic structure, while retaining
the essence of the single charge nature of the transport process. We finally
point out, however, that the inclusion of electronic structure and hence
well-resolved Fock space excitations is crucial in some notable examples.Comment: 12 pages, 10 figure
- …