215 research outputs found
Leptin, acylcarnitine metabolites and development of adiposity in the Rhea mother-child cohort in Crete, Greece.
OBJECTIVE: This study aims to investigate relations of serum leptin at age 4 with development of adiposity and linear growth during 3 years of follow-up among 75 Greek children and to identify serum metabolites associated with leptin at age 4 and to characterize their associations with adiposity gain and linear growth. METHODS: Linear regression models that accounted for maternal age, education and gestational weight gain and child's age and sex were used to examine associations of leptin and leptin-associated metabolites measured at age 4 with indicators of adiposity and linear growth at age 7. RESULTS: Each 1-unit increment in natural log-(ln)-transformed leptin corresponded with 0.33 (95% CI: 0.10, 0.55) units greater body mass index-for-age z-score gain during follow-up. Likewise, higher levels of the leptin-associated metabolites methylmalonyl-carnitine and glutaconyl-carnitine corresponded with 0.14 (95% CI: 0.01, 0.27) and 0.07 (95% CI: -0.01, 0.16) units higher body mass index-for-age z-score gain, respectively. These relationships did not differ by sex or baseline weight status and were independent of linear growth. CONCLUSIONS: These findings suggest that leptin, methylmalonyl-carnitine and possibly glutaconyl-carnitine are associated with weight gain during early childhood. Future studies are warranted to confirm these findings in other populations
Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants
Original article can be found at: http://www.rsc.org/publishing/journals/EM/Index.asp Copyright Royal Society of Chemistry. DOI: 10.1039/b805157gMass, major ionic components (MICs) of PM2.5, and related gaseous pollutants (SO2, NOx, NH3, HNO2, and HNO3) were monitored over six locations of different anthropogenic influence (industrial, urban, suburban, and rural) in Belgium. SO42-, NO3- NH4+, and Na+ were the primary ions of PM2.5 with averages diurnal concentrations ranging from 0.4-4.5, 0.3-7.6, 0.9-4.9, and 0.4-1.2 g/m3, respectively. MICs formed 39% of PM2.5 on an average, but it could reach up to 80-98 %. The SO2, NO, NO2, HNO2, and HNO3 levels showed high seasonal and site-specific fluctuations. The NH3 levels were similar over all the sites (2-6 g/m3), indicating its relation to the evenly distributed animal husbandry activities. The sulfur and nitrogen oxidation ratios for PM2.5 point towards a low-to-moderate formation of secondary sulfate and nitrate aerosols over five cities/towns, but their fairly intensive formation at the rural Wingene. Cluster analysis revealed the association of three groups of compounds in PM2.5; (i) NH4NO3, KNO3; (ii) Na2SO4; and (iii) MgCl2, CaCl2, MgF2, CaF2, corresponding to anthropogenic, sea-salt, and mixed (sea-salt + anthropogenic) aerosols, respectively. The neutralization and cation-to-anion ratios indicate that MICs of PM2.5 appeared mostly as (NH4)2SO4 and NH4NO3 salts. Sea-salt input was maximal during winter reaching up to 12 % of PM2.5. The overall average Cl-loss for sea-salt particles of PM2.5 at the six sites varied between 69 and 96 % with an average of 87 %. Principal component analysis revealed vehicular emission, coal/wood burning and animal farming as the dominating sources for the ionic components of PM2.5.Peer reviewe
Safety of monosodium salt of l-5-methyltetrahydrofolic acid as a novel food pursuant to Regulation (EU) 2015/2283 and the bioavailability of folate from this source in the context of Directive 2002/46/EC, Regulation (EU) No 609/2013 and Regulation (EC) No 1925/2006
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on monosodium salt of l-5-methyltetrahydrofolic acid (5-MTHF) as a novel food (NF) pursuant to Regulation (EU) 2015/2283 and to address the bioavailability of folate from this source in the context of Directive 2002/46/EC, Regulation (EU) No 609/2013 and Regulation (EC) No 1925/2006. The NF is produced by chemical synthesis and consists of at least 95% (w/w) of 5-MTHF and 4%–5% (w/w) of sodium. It is proposed to be used as a partial or complete substitute to folic acid and other sources of added folate in a number of food categories. The production process, composition, specifications and stability of the NF do not raise safety concerns. When used as an ingredient in different food matrices, proper processing/storage conditions need to be considered to preserve the stability of the NF. Regarding bioavailability, the Panel considers that the NF readily dissociates into Na and l-methylfolate ions, which subsequently are absorbed and enter the circulation. Thus, the bioavailability of 5-MTHF from the NF is comparable to that of other currently authorised salts of 5-MTHF. The Panel considers that the consumption of the NF is not nutritionally disadvantageous as long as the combined intake of the NF and the other supplemental forms of folate under their authorised conditions of use is below the ULs established for the different age groups of the general population. The Panel concludes that the NF is safe under the proposed conditions of use. The Panel also concludes that the NF is a source from which folate is bioavailable
Safety of an extension of use of Yarrowia lipolytica yeast biomass as a novel food pursuant to Regulation (EU) 2015/2283
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of an extension of use for Yarrowia lipolytica yeast biomass as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The extension of use pertains to the use of the NF as a food ingredient in single meal replacement products for weight reduction for adults at a maximum amount of 6 g NF per day, which is the same amount of NF as already authorised in food supplements for this population group. According to the applicant, food supplements with Yarrowia lipolytica biomass (as already authorised) should not be consumed concomitantly with the meal replacement products in order not to exceed the 6 g NF per day. The Panel considers that the consumption of the NF is not nutritionally disadvantageous under the proposed conditions of use. The Panel concludes that the NF, Yarrowia lipolytica yeast biomass, is safe under the proposed conditions of use
Safety of glucosyl hesperidin as a Novel food pursuant to Regulation (EU) 2015/2283
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on glucosyl hesperidin (GH) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF, which is produced from hesperidin and dextrin by enzymatic reactions, is a powder consisting mainly of monoglucosyl hesperidin (MGH) and unreacted hesperidin (flavonoid), which account in total for up to 92.8% (on dry basis) of the product. The applicant proposed to use the NF in specific drinks and food supplements leading to a maximum intake of up to 364 mg per day for adults. The target population is the general population, except for food supplements for which the proposed target population is children from 1 year onwards and adults. Taking into consideration the composition of the NF and the proposed uses, the consumption of the NF is not nutritionally disadvantageous. There are no concerns regarding genotoxicity of the NF. Based on a 90-day oral toxicity study conducted with the NF, the Panel considers the NOAEL at the mid-dose group, i.e. ~ 1000 mg/kg body weight (bw) per day. By applying an uncertainty factor of 200, the resulting intake providing sufficient margin of exposure for humans would be 5 mg/kg bw per day. The available human intervention studies did not report clinically relevant changes in haematological or clinical chemistry parameters following the administration of GH/MGH at supplemental doses of up to 3 g/day for 12 weeks. Overall, the Panel considers that the margin of exposure (~ 200) between the intake of the NF at the proposed uses and use levels and the NOAEL from the 90-day study is sufficient. The Panel concludes that the NF, glucosyl hesperidin, is safe for the target population at the proposed uses and use levels
Safety of Acheta domesticus powder as a Novel food pursuant to Regulation (EU) 2015/2283
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on Acheta (A.) domesticus powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The main components of the NF are protein, fat and dietary fibre (chitin). The Panel notes that the concentration of contaminants in the NF depends on the occurrence levels of these substances in the insect feed. The Panel further notes that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The NF has a high protein content, although the true protein content is overestimated when using the nitrogen-to-protein conversion factor of 6.25 due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as food ingredient in a number of food products. The target population proposed by the applicant is the general population. Considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The panel notes that no safety concerns arise from the toxicological information of A. domesticus. The panel considers that the consumption of the NF might trigger primary sensitisation to A. domesticus proteins and may cause allergic reactions in subjects allergic to crustaceans, mites and molluscs. Additionally, allergens from the feed may end up in the NF. The panel concludes that the NF is safe under the proposed uses and use levels
- …