885 research outputs found

    Effect of spin-orbit interaction on the critical temperature of an ideal Bose gas

    Full text link
    We consider Bose-Einstein condensation of an ideal bose gas with an equal mixture of `Rashba' and `Dresselhaus' spin-orbit interactions and study its effect on the critical temperature. In uniform bose gas a `cusp' and a sharp drop in the critical temperature occurs due to the change in the density of states at a critical Raman coupling where the degeneracy of the ground states is lifted. Relative drop in the critical temperature depends on the diluteness of the gas as well as on the spin-orbit coupling strength. In the presence of a harmonic trap, the cusp in the critical temperature smoothened out and a minimum appears. Both the drop in the critical temperature and lifting of `quasi-degeneracy' of the ground states exhibit crossover phenomena which is controlled by the trap frequency. By considering a 'Dicke' like model we extend our calculation to bosons with large spin and observe a similar minimum in the critical temperature near the critical Raman frequency, which becomes deeper for larger spin. Finally in the limit of infinite spin, the critical temperature vanishes at the critical frequency, which is a manifestation of Dicke type quantum phase transition.Comment: 9 pages, 6 figure

    Stability of strange stars (SS) derived from a realistic equation of state

    Get PDF
    A realistic equation of state (EOS) leads to realistic strange stars (ReSS) which are compact in the mass radius plot, close to the Schwarzchild limiting line (Dey et al 1998). Many of the observed stars fit in with this kind of compactness, irrespective of whether they are X-ray pulsars, bursters or soft γ\gamma repeaters or even radio pulsars. We point out that a change in the radius of a star can be small or large, when its mass is increasing and this depends on the position of a particular star on the mass radius curve. We carry out a stability analysis against radial oscillations and compare with the EOS of other strange star (SS) models. We find that the ReSS is stable and an M-R region can be identified to that effect.Comment: 16 pages including 5 figures. Accepted for publication in MPL
    corecore