1,237 research outputs found

    The matrix Hamiltonian for hadrons and the role of negative-energy components

    Full text link
    The world-line (Fock-Feynman-Schwinger) representation is used for quarks in arbitrary (vacuum and valence gluon) field to construct the relativistic Hamiltonian. After averaging the Green's function of the white qqˉq\bar q system over gluon fields one obtains the relativistic Hamiltonian, which is matrix in spin indices and contains both positive and negative quark energies. The role of the latter is studied in the example of the heavy-light meson and the standard einbein technic is extended to the case of the matrix Hamiltonian. Comparison with the Dirac equation shows a good agreement of the results. For arbitrary qqˉq\bar q system the nondiagonal matrix Hamiltonian components are calculated through hyperfine interaction terms. A general discussion of the role of negative energy components is given in conclusion.Comment: 29 pages, no figure

    Dynamics of confined gluons

    Full text link
    Propagation of gluons in the confining vacuum is studied in the framework of the background perturbation theory, where nonperturbative background contains confining correlators. Two settings of the problem are considered. In the first the confined gluon is evolving in time together with static quark and antiquark forming the one-gluon static hybrid. The hybrid spectrum is calculated in terms of string tension and is in agreement with earlier analytic and lattice calculations. In the second setting the confined gluon is exchanged between quarks and the gluon Green's function is calculated, giving rise to the Coulomb potential modified at large distances. The resulting screening radius of 0.5 fm presents a serious problem when confronting with lattice and experimental data. A possible solution of this discrepancy is discussed.Comment: 17 pages, no figures; v2: minor numerical changes in the tabl

    Decay constants of the heavy-light mesons from the field correlator method

    Get PDF
    Meson Green's functions and decay constants fΓf_{\Gamma} in different channels Γ\Gamma are calculated using the Field Correlator Method. Both, spectrum and fΓf_\Gamma, appear to be expressed only through universal constants: the string tension σ\sigma, αs\alpha_s, and the pole quark masses. For the SS-wave states the calculated masses agree with the experimental numbers within ±5\pm 5 MeV. For the DD and DsD_s mesons the values of fP(1S)f_{\rm P} (1S) are equal to 210(10) and 260(10) MeV, respectively, and their ratio fDs/fDf_{D_s}/f_D=1.24(3) agrees with recent CLEO experiment. The values fP(1S)=182,216,438f_{\rm P}(1S)=182, 216, 438 MeV are obtained for the BB, BsB_s, and BcB_c mesons with the ratio fBs/fBf_{B_s}/f_B=1.19(2) and fD/fBf_D/f_B=1.14(2). The decay constants fP(2S)f_{\rm P}(2S) for the first radial excitations as well as the decay constants fV(1S)f_{\rm V}(1S) in the vector channel are also calculated. The difference of about 20% between fDsf_{D_s} and fDf_D, fBsf_{B_s} and fBf_B directly follows from our analytical formulas.Comment: 37 pages, 10 tables, RevTeX

    Product Integral Formalism and Non-Abelian Stokes Theorem

    Get PDF
    We make use of the properties of product integrals to obtain a surface product integral representation for the Wilson loop operator. The result can be interpreted as the non-abelian version of Stokes' theorem.Comment: Latex; condensed version of hep-th/9903221, to appear in Jour. Math. Phy

    A short distance quark-antiquark potential

    Get PDF
    Leading terms of the static quark-antiquark potential in the background perturbation theory are reviewed, including perturbative, nonperturbative and interference ones. The potential is shown to describe lattice data at short quark-antiquark separations with a good accuracy.Comment: 4 pages, 2 figures, talk at the NPD-2002 Conference, December 2-6, ITEP, Moscow, references update

    Diquark and triquark correlations in the deconfined phase of QCD

    Full text link
    We use the non-perturbative Q\bar Q potential at finite temperatures derived in the Field Correlator Method to obtain binding energies for the lowest eigenstates in the Q\bar Q and QQQ systems (Q=c,b). The three--quark problem is solved by the hyperspherical method. The solution provides an estimate of the melting temperature and the radii for the different diquark and triquark bound states. In particular we find that J/\psi and cccccc ground states survive up to T \sim 1.3 T_c, where T_c is the critical temperature, while the corresponding bottomonium states survive even up to higher temperature, T \sim 2.2 T_c.Comment: 11 pages, 1 figure; published versio
    corecore