221 research outputs found

    Quantum recoil effects in finite-time disentanglement of two distinguishable atoms

    Full text link
    Starting from the requirement of distinguishability of two atoms by their positions, it is shown that photon recoil has a strong influence on finite-time disentanglement and in some cases prevents its appearance. At near-field inter atomic distances well localized atoms, with maximally one atom being initially excited, may suffer disentanglement at a single finite time or even at a series of equidistant finite times, depending on their mean inter atomic distance and their initial electronic preparation.Comment: 13 pages, 1 figure, submitted to Physical Review on august 2

    Suppression of decoherence by bath ordering

    Full text link
    The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the Tessieri-Wilkie Hamiltonian \cite{TWmodel}. The pair of spins served as an open subsystem were prepared in one of the Bell states and the bath consisted of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with the increasing the coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence are recovered in some extent to the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.Comment: 32 pages, Chinese Physics (accepted

    The Rotating-Wave Approximation: Consistency and Applicability from an Open Quantum System Analysis

    Full text link
    We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly reproduced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.Comment: 17 pages, 0 figures
    corecore