268 research outputs found

    Liver transplantation for type I and type IV glycogen storage disease

    Get PDF
    Progressive liver failure or hepatic complications of the primary disease led to orthotopic liver transplantation in eight children with glycogen storage disease over a 9-year period. One patient had glycogen storage disease (GSD) type I (von Gierke disease) and seven patients had type IV GSD (Andersen disease). As previously reported [19], a 16.5-year-old-girl with GSD type I was successfully treated in 1982 by orthotopic liver transplantation under cyclosporine and steroid immunosuppression. The metabolic consequences of the disease have been eliminated, the renal function and size have remained normal, and the patient has lived a normal young adult life. A late portal venous thrombosis was treated successfully with a distal splenorenal shunt. Orthotopic liver transplantation was performed in seven children with type N GSD who had progressive hepatic failure. Two patients died early from technical complications. The other five have no evidence of recurrent hepatic amylopectinosis after 1.1–5.8 postoperative years. They have had good physical and intellectual maturation. Amylopectin was found in many extrahepatic tissues prior to surgery, but cardiopathy and skeletal myopathy have not developed after transplantation. Postoperative heart biopsies from patients showed either minimal amylopectin deposits as long as 4.5 years following transplantation or a dramatic reduction in sequential biopsies from one patient who initially had dense myocardial deposits. Serious hepatic derangement is seen most commonly in types T and IV GSD. Liver transplantation cures the hepatic manifestations of both types. The extrahepatic deposition of abnormal glycogen appears not to be problematic in type I disease, and while potentially more threatening in type IV disease, may actually exhibit signs of regression after hepatic allografting

    Muscle pain in mitochondrial diseases: a picture from the Italian network

    Get PDF
    Muscle pain may be part of many neuromuscular disorders including myopathies, peripheral neuropathies and lower motor neuron diseases. Although it has been reported also in mitochondrial diseases (MD), no extensive studies in this group of diseases have been performed so far. We reviewed clinical data from 1398 patients affected with mitochondrial diseases listed in the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases", to assess muscle pain and its features. Muscle pain was present in 164 patients (11.7%). It was commonly observed in subjects with chronic progressive external ophthalmoplegia (cPEO) and with primary myopathy without cPEO, but also-although less frequently-in multisystem phenotypes such as MELAS, MERFF, Kearns Sayre syndrome, NARP, MNGIE and Leigh syndrome. Patients mainly complain of diffuse exercise-related muscle pain, but focal/multifocal and at rest myalgia were often also reported. Muscle pain was more commonly detected in patients with mitochondrial DNA mutations (67.8%) than with nuclear DNA changes (32.2%). Only 34% of the patients showed a good response to drug therapy. Interestingly, patients with nuclear DNA mutations tend to have a better therapeutic response than patients with mtDNA mutations. Muscle pain is present in a significant number of patients with MD, being one of the most common symptoms. Although patients with a myopathic phenotype are more prone to develop muscle pain, this is also observed in patients with a multi system involvement, representing an important and disabling symptom having poor response to current therapy

    Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration.

    Get PDF
    OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy

    Limb-Girdle Muscular Dystrophies (LGMDs): The Clinical Application of NGS Analysis, a Family Case Report

    Get PDF
    The diagnosis of LGMD2A (calpainopathy) can be challenging due to genetic heterogeneity and to high similarity with other LGMDs or neuromuscular disorders. In this setting, NGS panels are highly recommended to perform differential diagnosis, identify new causative mutations and enable genotype-phenotype correlations. In this manuscript, the case of a patient affected by LGMD2A is reported, for which the application of a defined custom designed NGS panel allowed to confirm the diagnosis of calpainopathy linked with two heterozygous variants in CAPN3, namely c.550delA and c.1813G>C. The first variant has been extensively described in relation to calpainopathy. The second variant c.1813G>C, instead, is novel and has been predicted to be probably damaging. In addition, NGS analysis on the proband revealed a heterozygous variant (c.550C>T) in the LMNA gene, which is associated with dilated cardiomyopathy. The variant is novel and has been predicted to be deleterious by subsequent bioinformatic analysis. Successively, segregation analysis was performed on family members. Interestingly, none of them showed neuromuscular symptoms but the mother was diagnosed with bradycardia and syncopal episodes and showed a positive family history for cardiomyopathy. The segregation analysis reported that the proband inherited the c.1813G>C (CAPN3) from the father who was a healthy carrier. The mother was positive for c.550delA (CAPN3) and c.550C>T (LMNA), suggesting thereby a possible genetic explanation for her cardiovascular problems. Segregation analysis, therefore, confirmed the inheritance pattern of the variants carried by the proband and highlighted a familiarity for cardiomyopathy which should not be neglected. The NGS analysis was further performed on the partner of the proband, to estimate the reproductive risk of the couple. The partner was negative to NGS screening, suggesting thereby a low risk to have an affected child with calpainopathy and 50% probability inherit the LMNA variant. This case report showed the clinical utility of the NGS panel in providing accurate LGMD2A diagnosis and identifying complex phenotypes originating from mutations in multiple genes. However, NGS results should always be accomplished by a dedicated genetic counseling, not only to evaluate the recurrence and reproductive risks but also to uncover unexpected findings which can be clinically significant

    Management of seizures in patients with primary mitochondrial diseases: consensus statement from the InterERNs Mitochondrial Working Group

    Get PDF
    Background and purposePrimary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. MethodsA panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. ResultsA high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with gamma-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. ConclusionsThese consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy

    Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency

    Get PDF
    Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease

    Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

    Get PDF
    Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies

    Efficacy and Safety of Elamipretide in Individuals With Primary Mitochondrial Myopathy: The MMPOWER-3 Randomized Clinical Trial

    Get PDF
    BACKGROUND AND OBJECTIVES: Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS: After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS: Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION: Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS: gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy

    Valproic acid inhibits adhesion of vincristine- and cisplatin-resistant neuroblastoma tumour cells to endothelium

    Get PDF
    Drug resistance to chemotherapy is often associated with increased malignancy in neuroblastoma (NB). In pursuit of alternative treatments for chemoresistant tumour cells, we tested the response of multidrug-resistant SKNSH and of vincristine (VCR)-, doxorubicin (DOX)-, or cisplatin (CDDP)-resistant UKF-NB-2, UKF-NB-3 or UKF-NB-6 NB tumour cell lines to valproic acid (VPA), a differentiation inducer currently in clinical trials. Drug resistance caused elevated NB adhesion (UKF-NB-2VCR, UKF-NB-2DOX, UKF-NB-2CDDP, UKF-NB-3VCR, UKF-NB-3CDDP, UKF-NB-6VCR, UKF-NB-6CDDP) to an endothelial cell monolayer, accompanied by downregulation of the adhesion receptor neural cell adhesion molecule (NCAM). Based on the UKF-NB-3 model, N-myc proteins were enhanced in UKF-NB-3VCR and UKF-NB-3CDDP, compared to the drug naïve controls. p73 was diminished, whereas the p73 isoform deltaNp73 was upregulated in UKF-NB-3VCR and UKF-NB-3CDDP. Valproic acid blocked adhesion of UKF-NB-3VCR and UKF-NB-3CDDP, but not of UKF-NB-3DOX, and induced the upregulation of NCAM surface expression, NCAM protein content and NCAM coding mRNA. Valproic acid diminished N-myc and enhanced p73 protein level, coupled with downregulation of deltaNp73 in UKF-NB-3VCR and UKF-NB-3CDDP. Valproic acid also reverted enhanced adhesion properties of drug-resistant UKF-NB-2, UKF-NB-6 and SKNSH cells, and therefore may provide an alternative approach to the treatment of drug-resistant NB by blocking invasive processes
    • …
    corecore