94 research outputs found

    Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-H\"uckel approximation

    Full text link
    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accomodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each others, the rearrangement of the surface charge distribution invariably produces anti-parallel dipolar doublets, that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions can not be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length, short compared with the size of the colloidal particles, is required in order to observe the attraction between like charged complexes due to the non-uniform distribution of the electric charge on their surface ('patch attraction'). On the other hand, by changing the polyelectrolyte/particle charge ratio, the interaction between like-charged polyelectrolyte-decorated (pd) particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the non-uniformity of their surface charge distribution.Comment: 24 pages, 9 figure

    On the effect of temperature on the reentrant condensation in polyelectrolyte-liposome complexation

    Full text link
    In systems of highly charged linear polyelectrolytes and oppositely charged colloidal particles, long-lived clusters of polyelectrolyte-decorated particles form in an interval of concentrations around the isoelectric point, where reentrant condensation connected to charge inversion of cluster is observed. The mechanisms that drive the aggregation and stabilize, at the different polymer/particle ratios, a well defined size of the aggregates are not completely understood. Moreover, a central question still remains unanswered, i.e., whether the clusters are true equilibrium or metastable aggregates. To elucidate this point, in this work, we have investigated the effect of the temperature on the formation of the clusters. We employed liposomes built up by DOTAP lipid interacting with a simple anionic polyion, sodium polyacrylate, over an extended concentration range below and over the isoelectric condition. Our results show that the aggregation process can be described by a thermally-activated mechanism.Comment: Submitted Langmui

    Colorimetric detection of chromium(VI) ions in water using unfolded-fullerene carbon nanoparticles

    Get PDF
    Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water–THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1–100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water sam-ples

    Kinetic Arrest in Polyion-Induced Inhomogeneously-Charged Colloidal Particle Aggregation

    Full text link
    Polymer chains adsorbed onto oppositely charged spherical colloidal particles can significantly modify the particle-particle interactions. For sufficient amounts of added polymers, the original electrostatic repulsion can even turn into an effective attraction and relatively large kinetically stable aggregates can form which display several unexpected and interesting peculiarities and some intriguing biotechnological implications. The attractive interaction contribution between two oppositely particles arises from the correlated adsorption of polyions at the oppositely charged particle surfaces, resulting in a non-homogeneous surface charge distribution. Here, we investigate the aggregation kinetics of polyion-induced colloidal complexes through Monte Carlo simulation, in which the effect of charge anisotropy is taken into account by a DLVO-like intra-particle potential, as recentely proposed by Velegol and Thwar [D. Velegol and P.K. Thwar, Langmuir, 17, 2001]. The results reveal that in the presence of a charge heterogeneity the aggregation process slows down due to the progressive increase of the potential barrier height upon clustering. Within this framework, the experimentally observed cluster phases in polyelectrolyte-liposomes solutions should be considered as a kinetic arrested state.Comment: 9 pages. 11 figure

    Complexation of macrocyclic ligands in ionic SDS micellar solutions: A dielectric spectroscopy investigation

    Get PDF
    The influence of two different macrocyclic ligands, [2.2.2] cryptand (C222) and 18-crown-6 (18C6) ether on the structural properties of sodium dodecyl sulfate (SDS) micellar solutions has been investigated by means of dielectric spectroscopy, in a frequency range from 1 kHz to 50 GHz. The dielectric spectra of SDS micellar solutions present three relaxation processes. In the MHz region, two different relaxations centered at about 30 MHz and 300 MHz, can be attributed to the micelle contribution, while, close to 20 GHz, the contribution of the bulk water orientational polarization is observed. The addition of ligands causes relevant changes in the overall dielectric relaxation spectrum. Significantly, the relaxation processes corresponding to the micelle component are largely modified by the presence of the different ligands investigated both in the relaxation frequency and in the dielectric strength, thus indicating a reorganization of the charged interface of ligand-decorated micelles. These changes are briefly discussed in the light of the phenomenology observed in attractive colloids, where the presence of a long-range electrostatic repulsive interaction and a short-range attractive interactions results in the presence of a well-defined cluster phase. (C) 2010 Elsevier B.V. All rights reserved
    • …
    corecore