8,171 research outputs found

    Entropy of the Kerr-Sen Black Hole

    Full text link
    We study the entropy of Kerr-Sen black hole of heterotic string theory beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the corrections to the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.Comment: 8 pages. Corrected references

    Global monopole in scalar tensor theory

    Get PDF
    The well known monopole solution of Barriola and Vilenkin (BV) resulting from the breaking of a global SO(3) symmetry is extended in general relativity along with a zero mass scalar field and also in Brans-Dicke(BD) theory of gravity.In the case of BD theory, the behaviour of spacetime and other variables such as BD scalar field and the monopole energy density have been studied numerically.For monopole along with a zero mass scalar field, exact solutions are obtained and depending upon the choice of arbitary parameters, the solutions either reduce to the BV case or to a pure scalar field solution as special cases.It is interesting to note that unlike the BV case the global monopole in the BD theory does exert gravitational pull on a test particle moving in its spacetime.Comment: 12 pages LaTex, 3 postscript figures, Communicated to Class.Quant.Gra

    Perturbative tests of non-perturbative counting

    Get PDF
    We observe that a class of quarter-BPS dyons in N=4 theories with charge vector (Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd (Q wedge P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.Comment: 10 pages, 0 figure

    Negative discriminant states in N=4 supersymmetric string theories

    Full text link
    Single centered BPS black hole solutions exist only when the charge carried by the black hole has positive discriminant. On the other hand the exact dyon spectrum in heterotic string theory compactified on T^6 is known to contain states with negative discriminant. We show that all of these negative discriminant states can be accounted for as two centered black holes. Thus after the contribution to the index from the two centered black holes is subtracted from the total microscopic index, the index for states with negative discriminant vanishes even for finite values of charges, in agreement with the results from the black hole side. Bound state metamorphosis -- which requires us to identify certain apparently different two centered configurations according to a specific set of rules -- plays a crucial role in this analysis. We also generalize these results to a class of CHL string theories.Comment: LaTeX file, 32 pages; v2: reference added; v3: added new section 3.

    Cosmology in scalar tensor theory and asymptotically de-Sitter Universe

    Get PDF
    We have investigated the cosmological scenarios with a four dimensional effective action which is connected with multidimensional, supergravity and string theories. The solution for the scale factor is such that initially universe undergoes a decelerated expansion but in late times it enters into the accelerated expansion phase. Infact, it asymptotically becomes a de-Sitter universe. The dilaton field in our model is a decreasing function of time and it becomes a constant in late time resulting the exit from the scalar tensor theory to the standard Einstein's gravity. Also the dilaton field results the existence of a positive cosmological constant in late times.Comment: 7 pages, Revtex Style, 6 Postscript figure

    Degeneracy of Decadent Dyons

    Get PDF
    A quarter-BPS dyon in N=4\mathcal{N}=4 super Yang-Mills theory is generically `decadent' in that it is stable only in some regions of the moduli space and decays on submanifolds in the moduli space. Using this fact, and from the degeneracy of the system close to the decay, a new derivation for the degeneracy of such dyons is given. The degeneracy obtained from these very simple physical considerations is in precise agreement with the results obtained from index computations in all known cases. Similar considerations apply to dyons in N=2\mathcal{N}=2 gauge theories. The relation between the N=4\mathcal{N} =4 field theory dyons and those counted by the Igusa cusp form in toroidally compactified heterotic string is elucidated.Comment: Some typos corrected and references adde

    Equation of motion approach to non-adiabatic quantum charge pumping

    Full text link
    We use the equations of motion of non-interacting electrons in a one-dimensional system to numerically study different aspects of charge pumping. We study the effects of the pumping frequency, amplitude, band filling and finite bias on the charge pumped per cycle, and the Fourier transforms of the charge and energy currents in the leads. Our method works for all values of parameters, and gives the complete time-dependences of the current and charge at any site of the system. Our results agree with Floquet and adiabatic scattering theory where these are applicable, and provides support for a mechanism proposed elsewhere for charge pumping by a traveling potential wave. For non-adiabatic and strong pumping, the charge and energy currents are found to have a marked asymmetry between the two leads, and pumping can work even against a substantial bias.Comment: 11 pages including 9 figures; expanded the paper to discuss left-right asymmetry of charge and energy currents, and effect of finite bia

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
    corecore