9 research outputs found

    Impact of Temporal Features of Cattle Exchanges on the Size and Speed of Epidemic Outbreaks

    Get PDF
    International audienceDatabases recording cattle exchanges offer unique opportunities for a better understanding and fighting of disease spreading. Most studies model contacts with (sequences of) networks, but this approach neglects important dynamical features of exchanges, that are known to play a key role in spreading. We use here a fully dynamic modeling of contacts and empirically compare the spreading outbreaks obtained with it to the ones obtained with network approaches. We show that neglecting time information leads to significant overestimates of actual sizes of spreading cascades, and that these sizes are much more heterogeneous than generally assumed. Our approach also makes it possible to study the speed of spreading, and we show that the observed speeds vary greatly, even for a same cascade size

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    Risk Factors for Whole Carcass Condemnations in the Swiss Slaughter Cattle Population

    Get PDF
    We used meat-inspection data collected over a period of three years in Switzerland to evaluate slaughterhouse-level, farm-level and animal-level factors that may be associated with whole carcass condemnation (WCC) in cattle after slaughter. The objective of this study was to identify WCC risk factors so they can be communicated to, and managed by, the slaughter industry and veterinary services. During meat inspection, there were three main important predictors of the risk of WCC; the slaughtered animal's sex, age, and the size of the slaughterhouse it was processed in. WCC for injuries and significant weight loss (visible welfare indicators) were almost exclusive to smaller slaughterhouses. Cattle exhibiting clinical syndromes that were not externally visible (e.g. pneumonia lesions) and that are associated with fattening of cattle, end up in larger slaughterhouses. For this reason, it is important for animal health surveillance to collect data from both types of slaughterhouses. Other important risk factors for WCC were on-farm mortality rate and the number of cattle on the farm of origin. This study highlights the fact that the many risk factors for WCC are as complex as the production system itself, with risk factors interacting with one another in ways which are sometimes difficult to interpret biologically. Risk-based surveillance aimed at farms with reoccurring health problems (e.g. a history of above average condemnation rates) may be more appropriate than the selection, of higher-risk animals arriving at slaughter. In Switzerland, the introduction of a benchmarking system that would provide feedback to the farmer with information on condemnation reasons, and his/her performance compared to the national/regional average could be a first step towards improving herd-management and financial returns for producers

    Modern temporal network theory: a colloquium

    No full text
    corecore