234 research outputs found

    APP mouse models for Alzheimer's disease preclinical studies

    Get PDF
    Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first-generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD Second-generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD In this review, we evaluate different APP mouse models of AD, and review recent studies using the second-generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study

    Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis – a CMR study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial edema is a substantial feature of the inflammatory response in human myocarditis. The relation between myocardial edema and myocardial mass in the course of healing myocarditis has not been systematically investigated. We hypothesised that the resolution of myocardial edema as visualised by T2-weighted cardiovascular magnetic resonance (CMR) is associated with a decrease of myocardial mass in steady state free precession (SSFP)-cine imaging.</p> <p>Methods</p> <p>21 patients with acute myocarditis underwent CMR shortly after onset of symptoms and 1 year later. For visualization of edema, a T2-weighted breath-hold black-blood triple-inversion fast spin echo technique was applied and the ratio of signal intensity of myocardium/skeletal muscle was assessed. Left ventricular (LV) mass, volumes and function were quantified from biplane cine steady state free precession images.</p> <p>11 healthy volunteers served as a control group for interstudy reproducibility of LV mass.</p> <p>Results</p> <p>In patients with myocarditis, a significant decrease in LV mass was observed during follow-up compared to the acute phase (156.7 ± 30.6 g vs. 140.3 ± 28.3 g, p < 0.0001). The reduction of LV mass paralleled the normalization of initially increased myocardial signal intensity on T2-weighted images (2.4 ± 0.4 vs. 1.68 ± 0.3, p < 0.0001).</p> <p>In controls, the interstudy difference of LV mass was lower than in patients (5.1 ± 2.9 g vs. 16.3 ± 14.2 g, p = 0.02) resulting in a lower coefficient of variability (2.1 vs 8.9%, p = 0.04).</p> <p>Conclusion</p> <p>Reversible abnormalities in T2-weighted CMR are paralleled by a transient increase in left ventricular mass during the course of myocarditis. Myocardial edema may be a common pathway explaining these findings.</p

    Expression of Y-box-binding protein dbpC/contrin, a potentially new cancer/testis antigen

    Get PDF
    Y-box-binding proteins are members of the human cold-shock domain protein superfamily, which includes dbpA, dbpB/YB-1, and dbpC/contrin. dbpC/contrin is a germ cell-specific Y-box-binding protein and is suggested to function as a nuclear transcription factor and RNA-binding protein in the cytoplasm. Whereas ubiquitous dbpB/YB-1 expression has been well studied in various types of human carcinomas as a prognostic or predictive marker, the dbpC/contrin expression in human tumour cells has not been reported. In this report, we provide the first evidence showing that dbpC was highly expressed in human testicular seminoma and ovarian dysgerminomas, and in carcinomas in other tissues and that its expression in normal tissues is nearly restricted to germ cells and placental trophoblasts. These results indicate that dbpC/contrin would be a potentially novel cancer/testis antigen

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Proteomic Identification of Protein Targets for 15-Deoxy-Δ12,14-Prostaglandin J2 in Neuronal Plasma Membrane

    Get PDF
    15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D2 (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ2, respectively. Previously, we reported that the cytotoxicity of 15d-PGJ2 was independent of DP2 and PPARγ, and suggested that 15d-PGJ2 induced apoptosis through the novel specific binding sites of 15d-PGJ2 different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ2 to amyloidoses, we performed binding assay [3H]15d-PGJ2 and specified targets for 15d-PGJ2 associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ2 and fibrillar Aβ. Specific binding sites of [3H]15d-PGJ2 were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [3H]15d-PGJ2 were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ2 in the plasma membrane. By using biotinylated 15d-PGJ2, eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ2 plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues
    corecore