53 research outputs found

    High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    Get PDF
    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method. © The Royal Society of Chemistry 2015.

    Photochemically reduced polyoxometalate assisted generation of silver and gold nanoparticles in composite films: a single step route

    Get PDF
    A simple method to embed noble metal (Ag, Au) nanoparticles in organic–inorganic nanocomposite films by single step method is described. This is accomplished by the assistance of Keggin ions present in the composite film. The photochemically reduced composite film has served both as a reducing agent and host for the metal nanoparticles in a single process. The embedded metal nanoparticles in composites film have been characterized by UV–Visible, TEM, EDAX, XPS techniques. Particles of less than 20 nm were readily embedded using the described approach, and monodisperse nanoparticles were obtained under optimized conditions. The fluorescence experiments showed that embedded Ag and Au nanoparticles are responsible for fluorescence emissions. The described method is facile and simple, and provides a simple potential route to fabricate self-standing noble metal embedded composite films

    Effect of Supershear Earthquakes on Structures

    No full text
    The structural design of infrastructure near to the fault zones may need a fair estimation of seismic loads. Also, structures respond differently based on how the earthquake ruptured. In a Supershear rupture, the speed of rupture propagation exceeds the Shear-wave velocity of earth-medium. Otherwise, it is called subshear rupture. Supershear ruptures can be generated based on physics using dynamic rupture simulations. There is evidence of natural supershear earthquakes like 1906 San Francisco Earthquake (Song S.G. et at., 2008), 1979 Imperial Valley Earthquake (Archuleta, 1984). This kind of earthquake rupture induces high amplitude ground motions along Fault parallel direction. Very few studies tried to understand the structural response due to supershear ruptured earthquakes. In our study, we simulate supershear and subshear earthquakes using dynamic rupture modelling and focus on understanding the difference in structural response. We also differentiated locations nearby fault zone based on subshear or supershear dominance

    Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis

    No full text
    Herein, we describe an in-situ hybridization of Nickel Selenide (Ni3Se2) with a Nickel Foam (NF) current collector as an efficient, ultra-durable electrode for the continuous alkaline water electrolysis. Earth abundant, cost effective, non-precious self-made Ni3Se2/NF electrode delivers an oxygen evolution reaction (OER) overpotential value of 315 mV at a current density of 100 mA cm−2 (versus a reversible hydrogen electrode) in aqueous electrolyte of 1 M KOH. On a static current density of 100 mA cm−2, Ni3Se2/NF electrode shows a good OER stability over 285 h with very small potential loss of 5.5% in alkaline electrolyte. Accordingly, the alkaline water electrolyzer constructed with Ni3Se2/NF (anode) and NiCo2S4/NF (cathode), it requires 1.58 V to deliver 10 mA cm−2 current density, with 500 h continuous operation in 1 M KOH. In addition, we demonstrate that the light-driven water splitting using solar panel, it can be a promising approach to facilitate true independence from electricity in H2 fuel economy. Overall, this methodology is one of the appropriate energy efficient ways to reduce the cost of water splitting devices, as it may simplify the diverse process and equipment. © 2016 Elsevier B.V.

    Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    No full text
    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm−1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10−9 cm2 min−1) and superior ion selectivity (2.95 × 107 S min cm−3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm−2 current density. © 2016 Elsevier B.V.

    Prussian Blue-Carbon Hybrid as a Non-Precious Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Medium

    No full text
    We describe a simple approach for the Prussian blue nanocubes dispersed on carbon composite (PBC/C) as a non-precious catalyst for the electrochemical oxygen reduction reaction (ORR) in alkaline medium. The interaction between Prussian blue (PB) and the carbon support was confirmed by using FT-IR, and XPS spectroscopy. PBC/C catalyst exhibits 100 mV more positive onset potential than Prussian blue supported on carbon (PB/VXC-72) for ORR. Rotating disk electrode measurements showed that PBC/C had about 17 times higher oxygen reduction mass activity compared to the PB/VXC-72 physical mixture. PBC/C hybrid catalyst exhibited superior durability in aqueous alkaline medium compared with Pt/C and also provided low H2O2production confirmed by rotating ring-disk electrode measurement. The PBC/C catalyst showed better activity and selectivity, which can be attributed to the synergistic coupling effects between the PB nanocubes and carbon support. © 2013 Elsevier Ltd.

    Hollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction

    No full text
    Hollow nitrogen-doped carbon spheres (HNCSs) were prepared by a facile method as non-precious catalysts for the oxygen reduction reaction (ORR). The HNCS catalysts exhibited ORR activity comparable with a commercial Pt/C catalyst and superior stability in alkaline electrolyte medium. This journal is © the Partner Organisations 2014.

    Porous LaCo1-xNixO3-delta Nanostructures as an Efficient Electrocatalyst for Water Oxidation and for a Zinc-Air Battery

    No full text
    Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm-2 in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application. © 2016 American Chemical Society.

    Hierarchical Nanostructured Pt8Ti-TiO2/C as an Efficient and Durable Anode Catalyst for Direct Methanol Fuel Cells

    No full text
    A catalyst for the electrochemical oxidation of methanol in direct methanol fuel cells (DMFCs) comprising Pt8Ti intermetallic nanoparticles dispersed in carbon nanorods (Pt8Ti-TiO2/C) is presented. The catalyst consists of Pt8Ti and rutile TiO2 nanoparticles dispersed in nitrogen-doped carbon hierarchical nanostructures. The Pt8Ti-TiO2/C catalyst showed a 50 mV positive onset potential and 10 times higher specific activity than a commercial Pt/C catalyst. Using a half-cell experiment, we show that Pt8Ti intermetallic nanoparticles greatly enhance the methanol oxidation activity and durability in comparison to a Pt/C commercial catalyst. More importantly, a DMFC anode constructed with Pt8Ti-TiO2/C catalyst showed 4.6 times higher power density than a commercial Pt/C catalyst at 0.35 V and 333 K. Additionally, the Pt8Ti-TiO2/C catalyst displayed superior durability in comparison to the Pt/C catalyst. Pt8Ti-TiO2/C showed an electrochemical surface area decay of 23% at the end of 3000 CV cycles, whereas the Pt/C catalyst showed a more rapid decay of 90% at the end of 3000 CV cycles. The excellent stability of the Pt8Ti-TiO2/C catalyst during the accelerated durability stability test (AST) can be attributed to the stability of the rutile TiO2 support, which is chemically resistant in the acidic electrolyte medium. The chronoamperometry and AST durability results confirmed that the Pt8Ti-TiO2/C hierarchical catalyst exhibited better stability than the pure Pt/C catalyst, suggesting that Pt8Ti-TiO2/C could be a promising anode catalyst in DMFCs. © 2015 American Chemical Society.
    corecore