14 research outputs found

    Transport Ă©lectronique dans l’alliage liquide binaire Or–Argent

    Get PDF
    Electronic transport in liquid binary alloys Gold-SilverThe electrical resistivity of the liquid alloy Gold-Silver was measured on the totality of the diagram of phase since the melting point until 1150°C. Our measurements, made in a quartz cell equipped with tungsten electrodes, were compared with those obtained by Roll and Motz using a technique without electrodes. The  technique that we used does not reproduce the anomalies observed by Roll and Motz in the curves of resistivity and its temperature coefficient as function of the concentration. The confrontation of our experimental results with the theory was made by using two types of  dephasing as well as the pseudopotential suggested by Idress et al. and used by Alam and Tomak

    Algorithmic aspects of high speed switching

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.Includes bibliographical references (p. 145-148).A major drawback of the traditional output queuing technique is that it requires a switch speedup of N, where N is the size of the switch. This dependence on N makes the switch non-scalable at high speeds. Input queuing has been suggested instead. The introduction of input queuing creates the necessity for developing switching algorithms to decide which packets to keep waiting at the input, and which packets to forward across the switch. In this thesis, we address various algorithmic aspects of switching. We prove in this thesis, that many of the practical switching algorithms still require a speedup to achieve even a weak notion of throughput. We propose two switching algorithms that belong to a family to which we refer in this thesis as priority switching. These two algorithms overcome some of the disadvantages in existing priority switching algorithms, such as the excessive amount of state information that needs to be maintained. We also develop a practical algorithm that belongs to a family to which we refer in this thesis as iterative switching. This algorithm achieves high throughput in practice and offers the advantage of not requiring more than one iteration, unlike other existing iterative switching algorithms which require multiple iterations to achieve high throughput. Finally, we address the issue of using switches in parallel to accommodate for the need of speedup. We study two settings of parallel switches, one with standard packet switching, and one with flow scheduling, in which flows cannot be split across multiple switches.by Saadeddine Mneimneh.Ph.D

    Virtual streams : a generic interface for uniform data access

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1997.Includes bibliographical references (leaf 73).by Saadeddine S. Mneimneh.M.S

    SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock

    Get PDF
    Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function—including fibrinolysis—to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states

    Human-Centered Design Taxonomy: Case Study Application with Novice, Multidisciplinary Designers

    Full text link
    Human-centered design (HCD) is a design-based pedagogy that provides students with opportunities to empathize with views that are unlike their own. While this has been identified as a useful design approach, learning and applying HCD is challenging for students without design expertise. In response to the current lack of consensus on how to teach HCD, we developed an HCD taxonomy that outlines five design spaces and practices of students engaging in this form of learning. In the case study described herein, we analyzed a novice, multidisciplinary design team’s HCD process to examine the efficacy of the taxonomy. Our findings indicate that students build HCD practices over time and that these practices should be interconnected to achieve higher levels of integration

    Structure and electrical resistivity of liquid Ni-Ge alloys

    Full text link
    International audienc

    Statistical Learning of Value-at-Risk and Expected Shortfall

    Full text link
    We propose a non-asymptotic convergence analysis of a two-step approach to learn a conditional value-at-risk (VaR) and a conditional expected shortfall (ES) using Rademacher bounds, in a non-parametric setup allowing for heavy-tails on the financial loss. Our approach for the VaR is extended to the problem of learning at once multiple VaRs corresponding to different quantile levels. This results in efficient learning schemes based on neural network quantile and least-squares regressions. An a posteriori Monte Carlo procedure is introduced to estimate distances to the ground-truth VaR and ES. This is illustrated by numerical experiments in a Student-tt toy model and a financial case study where the objective is to learn a dynamic initial margin

    Learning Value-at-Risk and Expected Shortfall

    Full text link
    We propose a non-asymptotic convergence analysis of a two-step approach to learn a conditional value-at-risk (VaR) and expected shortfall (ES) in a nonparametric setting using Rademacher and Vapnik-Chervonenkis bounds. Our approach for the VaR is extended to the problem of learning at once multiple VaRs corresponding to different quantile levels. This results in efficient learning schemes based on neural network quantile and least-squares regressions. An a posteriori Monte Carlo (non-nested) procedure is introduced to estimate distances to the ground-truth VaR and ES without access to the latter. This is illustrated using numerical experiments in a Gaussian toy-model and a financial case-study where the objective is to learn a dynamic initial margin
    corecore