967 research outputs found

    Theory of Concentration Dependence in Drag Reduction by Polymers and of the MDR asymptote

    Full text link
    A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated and analyzed. The qualitative phase diagram of drag coefficient vs. Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the Maximum Drag Reduction (MDR) asymptote. The Re-dependent drag and the MDR are analytically explained, and the dependence of the amount of drag on material parameters is rationalized

    Study of voltage, acid concentration, and temperature on nanopore structures

    Get PDF

    Drag Reduction by Polymers in Wall Bounded Turbulence

    Full text link
    We address the mechanism of drag reduction by polymers in turbulent wall bounded flows. On the basis of the equations of fluid mechanics we present a quantitative derivation of the "maximum drag reduction (MDR) asymptote" which is the maximum drag reduction attained by polymers. Based on Newtonian information only we prove the existence of drag reduction, and with one experimental parameter we reach a quantitative agreement with the experimental measurements.Comment: 4 pages, 1 fig., included, PRL, submitte

    Design of a Broadband Amplifier for High Speed Applications

    Get PDF
    This paper provides comprehensive insight into the design approach followed for an amplifier dedicated to high speed base band signals. To demonstrate the methodology, an amplifier consisting of nine PHEMT cascode cells within a distributed amplifier topology was designed. The resulting frequency response is 40 GHz at the 3-dB point, and the output voltage for a 43 Gbps eye diagram is 7.3 Vpp at the chip terminal

    Prophylactic Use of an Implantable Cardioverter-Defibrillator After Acute Myocardial Infarction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72580/1/j.1527-5299.2005.04172.x.pd

    Comparison of Theory and Direct Numerical Simulations of Drag Reduction by Rodlike Polymers in Turbulent Channel Flows

    Full text link
    Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number \Re and Deborah number \De. The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high \Re and \De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory

    Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers

    Get PDF
    We address the "Additive Equivalence" discovered by Virk and coworkers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar Maximum Drag Reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte
    • …
    corecore