967 research outputs found
Theory of Concentration Dependence in Drag Reduction by Polymers and of the MDR asymptote
A simple model of the effect of polymer concentration on the amount of drag
reduction in turbulence is presented, simulated and analyzed. The qualitative
phase diagram of drag coefficient vs. Reynolds number (Re) is recaptured in
this model, including the theoretically elusive onset of drag reduction and the
Maximum Drag Reduction (MDR) asymptote. The Re-dependent drag and the MDR are
analytically explained, and the dependence of the amount of drag on material
parameters is rationalized
Drag Reduction by Polymers in Wall Bounded Turbulence
We address the mechanism of drag reduction by polymers in turbulent wall
bounded flows. On the basis of the equations of fluid mechanics we present a
quantitative derivation of the "maximum drag reduction (MDR) asymptote" which
is the maximum drag reduction attained by polymers. Based on Newtonian
information only we prove the existence of drag reduction, and with one
experimental parameter we reach a quantitative agreement with the experimental
measurements.Comment: 4 pages, 1 fig., included, PRL, submitte
Design of a Broadband Amplifier for High Speed Applications
This paper provides comprehensive insight into the design approach followed for an amplifier dedicated to high speed base band signals. To demonstrate the methodology, an amplifier consisting of nine PHEMT cascode cells within a distributed amplifier topology was designed. The resulting frequency response is 40 GHz at the 3-dB point, and the output voltage for a 43 Gbps eye diagram is 7.3 Vpp at the chip terminal
Prophylactic Use of an Implantable Cardioverter-Defibrillator After Acute Myocardial Infarction
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72580/1/j.1527-5299.2005.04172.x.pd
Comparison of Theory and Direct Numerical Simulations of Drag Reduction by Rodlike Polymers in Turbulent Channel Flows
Numerical simulations of turbulent channel flows, with or without additives,
are limited in the extent of the Reynolds number \Re and Deborah number \De.
The comparison of such simulations to theories of drag reduction, which are
usually derived for asymptotically high \Re and \De, calls for some care. In
this paper we present a study of drag reduction by rodlike polymers in a
turbulent channel flow using direct numerical simulation and illustrate how
these numerical results should be related to the recently developed theory
Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers
We address the "Additive Equivalence" discovered by Virk and coworkers: drag
reduction affected by flexible and rigid rodlike polymers added to turbulent
wall-bounded flows is limited from above by a very similar Maximum Drag
Reduction (MDR) asymptote. Considering the equations of motion of rodlike
polymers in wall-bounded turbulent ensembles, we show that although the
microscopic mechanism of attaining the MDR is very different, the macroscopic
theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte
- …