93 research outputs found

    Novel Phase Between Band and Mott Insulators in Two Dimensions

    Full text link
    We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Δ\Delta, the so-called ionic Hubbard model, using cluster dynamical mean field theory. We find that for large Coulomb repulsion, UΔU\gg \Delta, the system is a Mott insulator (MI). For weak to intermediate values of Δ\Delta, on decreasing UU, the Mott gap closes at a critical value Uc1(Δ)U_{c1}(\Delta) beyond which a correlated insulating phase with possible bond order (BO) is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Δ)U_{c2}(\Delta) with a finite charge gap at the transition. For large Δ\Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary

    Cluster Dynamical Mean-Field Theory of the density-driven Mott transition in the one-dimensional Hubbard model

    Full text link
    The one-dimensional Hubbard model is investigated by means of two different cluster schemes suited to introduce short-range spatial correlations beyond the single-site Dynamical Mean-Field Theory, namely the Cluster-Dynamical Mean-Field Theory and its periodized version. It is shown that both cluster schemes are able to describe with extreme accuracy the evolution of the density as a function of the chemical potential from the Mott insulator to the metallic state. Using exact diagonalization to solve the cluster impurity model, we discuss the role of the truncation of the Hilbert space of the bath, and propose an algorithm that gives higher weights to the low frequency hybridization matrix elements and improves the speed of the convergence of the algorithm.Comment: 6 pages, 4 figures, minor corrections in v

    Pseudogap induced by short-range spin correlations in a doped Mott insulator

    Full text link
    We study the evolution of a Mott-Hubbard insulator into a correlated metal upon doping in the two-dimensional Hubbard model using the Cellular Dynamical Mean Field Theory. Short-range spin correlations create two additional bands apart from the familiar Hubbard bands in the spectral function. Even a tiny doping into this insulator causes a jump of the Fermi energy to one of these additional bands and an immediate momentum dependent suppression of the spectral weight at this Fermi energy. The pseudogap is closely tied to the existence of these bands. This suggests a strong-coupling mechanism that arises from short-range spin correlations and large scattering rates for the pseudogap phenomenon seen in several cuprates.Comment: 6 pages, 6 figure

    Quality Aware Generative Adversarial Networks

    Full text link
    Generative Adversarial Networks (GANs) have become a very popular tool for implicitly learning high-dimensional probability distributions. Several improvements have been made to the original GAN formulation to address some of its shortcomings like mode collapse, convergence issues, entanglement, poor visual quality etc. While a significant effort has been directed towards improving the visual quality of images generated by GANs, it is rather surprising that objective image quality metrics have neither been employed as cost functions nor as regularizers in GAN objective functions. In this work, we show how a distance metric that is a variant of the Structural SIMilarity (SSIM) index (a popular full-reference image quality assessment algorithm), and a novel quality aware discriminator gradient penalty function that is inspired by the Natural Image Quality Evaluator (NIQE, a popular no-reference image quality assessment algorithm) can each be used as excellent regularizers for GAN objective functions. Specifically, we demonstrate state-of-the-art performance using the Wasserstein GAN gradient penalty (WGAN-GP) framework over CIFAR-10, STL10 and CelebA datasets.Comment: 10 pages, NeurIPS 201

    Electron Doping of Cuprates via Interfaces with Manganites

    Full text link
    The electron doping of undoped high-TcT_c cuprates via the transfer of charge from manganites (or other oxides) using heterostructure geometries is here theoretically discussed. This possibility is mainly addressed via a detailed analysis of photoemission and diffusion voltage experiments, which locate the Fermi level of manganites above the bottom of the upper Hubbard band of some cuprate parent compounds. A diagram with the relative location of Fermi levels and gaps for several oxides is presented. The procedure discussed here is generic, allowing for the qualitative prediction of the charge flow direction at several oxide interfaces. The addition of electrons to antiferromagnetic Cu oxides may lead to a superconducting state at the interface with minimal quenched disorder. Model calculations using static and dynamical mean-field theory, supplemented by a Poisson equation formalism to address charge redistribution at the interface, support this view. The magnetic state of the manganites could be antiferromagnetic or ferromagnetic. The former is better to induce superconductivity than the latter, since the spin-polarized charge transfer will be detrimental to singlet superconductivity. It is concluded that in spite of the robust Hubbard gaps, the electron doping of undoped cuprates at interfaces appears possible, and its realization may open an exciting area of research in oxide heterostructures.Comment: 12 pages, 9 figure

    Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators

    Full text link
    Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to describe the Mott phase. Hence, as a step towards a quantitative theory of the competition between antiferromagnetism (AFM) and d-wave superconductivity (SC) in the cuprates, we use Cellular Dynamical Mean Field Theory to compute zero temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger than the bandwidth. The order parameter also assumes a dome shape as a function of doping while, by contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the presence of a finite second-neighbor hopping t', the zero temperature phase diagram displays the electron-hole asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in the cuprates. Adding realistic third-neighbor hopping t'' improves the overall agreement with the experimental phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs T_{c}/T_{c}^{max} phase diagram of the cuprates is universal. The calculated ARPES spectrum displays the observed electron-hole asymmetry. Our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise be considered anomalous from the point of view of the standard BCS approach.Comment: 13 pages, 7 figure

    Instagram Influencers Credibility Dimensions and Purchase Intention of Followers: Empirical Evidence

    Get PDF
    The advent of SMIs has primarily altered the means business connect with their prospects and customers. Currently, many SNSs enables SMIs to endorse the products, share opinions, provide feedback, and communicate with their followers either publicly or privately. This research aims to determine the mediating effect of loyalty of followers towards the influencer and ascribed opinion leadership on SMIs dimensions (expertise, trustworthiness, and attractiveness) and purchase intention relationship from the perspective of Instagram users in India. To measure the objective, the study acquired responses from 250 Indian Instagram users in the age group of 18-24. Results indicated that the purchase intention of followers is positively influenced by expertise, trustworthiness, ascribed opinion leadership, and loyalty of followers towards the influencer dimensions. Here, ascribed opinion leadership and loyalty of followers towards the influencer acts as an effective arbitrator between SMIs dimensions (expertise, trustworthiness, and attractiveness) and purchase intention relationship. The study suggests that before engaging SMI to promote the brand, the companies should understand the perception of followers towards the influencer in terms of expertise, attractiveness, and trustworthiness dimensions
    corecore