83 research outputs found

    Near-infrared jet emission in the microquasar XTE J1550-564

    Full text link
    Context: Microquasars are accreting Galactic sources that are also observed to launch relativistic jets. A key signature of the ejection is non-thermal radio emission. The level of this jet component at high frequencies is still poorly constrained. Aims: The X-ray binary and microquasar black hole candidate XTE J1550-564 exhibited a faint X-ray outburst in April 2003 during which it stayed in the X-ray low/hard state. We took optical and near-infrared (NIR) observations with the ESO/NTT telescope during this outburst to disentangle the various contributions to the spectral energy distribution (SED) and investigate the presence of a jet component. Methods: Photometric and spectroscopic observations allowed us to construct an SED and also to produce a high time-resolution lightcurve. Results: The SED shows an abrupt change of slope from the NIR domain to the optical. The NIR emission is attributed to non-thermal synchrotron emission from the compact, self-absorbed jet that is known to be present in the low/hard state. This is corroborated by the fast variability, colours, lack of prominent spectral features and evidence for intrinsic polarisation. The SED suggests the jet break from the optically thick to the thin regime occurs in the NIR. Conclusions: The simultaneous optical-NIR data allow an independent confirmation of jet emission in the NIR. The transition to optically thin synchrotron occurs at NIR frequencies or below, which leads to an estimated characteristic size greater than 2x10^8cm and magnetic field less than 5T for the jet base, assuming a homogeneous one-zone synchrotron model.Comment: Accepted for publication in Astronomy and Astrophysics (Section 7. Stellar structure and evolution; 8 pages, 6 figures

    Pentaquark baryons in SU(3) quark model

    Full text link
    We study the SU(3) group structure of pentaquark baryons which are made of four quarks and one antiquark. The pentaquark baryons form {1}, {8}, {10}, {10}-bar, {27}, and {35} multiplets in SU(3) quark model. First, the flavor wave functions of all the pentaquark baryons are constructed in SU(3) quark model and then the flavor SU(3) symmetry relations for the interactions of the pentaquarks with three-quark baryons and pentaquark baryons are obtained.Comment: REVTeX, 36 pages, 8 figures, references added, section for mass sum rules is added, to appear in Phys. Rev.

    Evidence for a compact jet dominating the broadband spectrum of the black hole accretor XTE J1550-564

    Full text link
    [abridged] The black hole X-ray binary XTE J1550-564 was monitored extensively at X-ray, optical and infrared wavelengths throughout its outburst in 2000. We show that it is possible to separate the optical/near-infrared (OIR) jet emission from the OIR disc emission. Focussing on the jet component, we find that as the source fades in the X-ray hard state, the OIR jet emission has a spectral index consistent with optically thin synchrotron emission (alpha ~ -0.6 to -0.7, where F_nu \propto nu^alpha). This jet emission is tightly and linearly correlated with the X-ray flux; L_OIR,jet \propto L_X^(0.98 +- 0.08) suggesting a common origin. This is supported by the OIR, X-ray and OIR to X-ray spectral indices being consistent with a single power law (alpha = -0.73). Ostensibly the compact, synchrotron jet could therefore account for ~ 100 % of the X-ray flux at low luminosities in the hard state. At the same time, (i) an excess is seen over the power law decay of the X-ray flux at the point in which the jet would start to dominate, (ii) the X-ray spectrum slightly softens, which seems to be due to a high energy cut-off or break shifting to a lower energy, and (iii) the X-ray rms variability increases. This may be the strongest evidence to date of synchrotron emission from the compact, steady jet dominating the X-ray flux of an X-ray binary. For XTE J1550-564, this is likely to occur within the luminosity range ~ (2 e-4 - 2 e-3) L_Edd on the hard state decline of this outburst. However, on the hard state rise of the outburst and initially on the hard state decline, the synchrotron jet can only provide a small fraction (~ a few per cent) of the X-ray flux. Both thermal Comptonization and the synchrotron jet can therefore produce the hard X-ray power law in accreting black holes.Comment: MNRAS accepted, 12 pages, 9 figure

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher
    • 

    corecore