62 research outputs found
Jet-loop reactor with cross-flow ultrafiltration membrane system for treatment of olive mill wastewater
ABSTRACT: Olive oil extraction is one of the ancient agricultural industries all over the Mediterranean area and even today it is of fundamental economic importance for many industries found over the whole Mediterranean. However, this industry generates large amounts of olive mill wastewater (OMW) and due to its physicochemical characteristics it causes severe environmental concerns and management problems in the Mediterranean area, which is facing water scarcity. Technologies to reuse this wastewater will have a high impact at the economic and environmental level. The work presented aims to improve the use of jet-loop reactors technology for the aerobic biotreatment of OMW. A jet-loop reactor (100 L) coupled with an ultrafiltration (UF) membrane (MBR) system (JACTO.MBR_100 L) were tested for the influence of hydraulic parameters on OMW degradation and scale-up to 1,000 L. Chemical oxygen demand and total phenols (TP) decreased notably (up to 85% and 80% removal efficiency, respectively) after the biological treatment. The treated OMW (UF permeate) was evaluated as a source for irrigation and its impact on the soil and plant growth and their quality parameters.info:eu-repo/semantics/publishedVersio
ΠΠ΅ΡΠΎΠ΄ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Ρ Π²Π°Π»ΠΊΠ°ΠΌΠΈ Π² Π²ΠΈΠ±ΡΠΎΠ²Π°Π»ΠΊΠΎΠ²ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠΈΡΠ΅Π»Π΅
The article presents the results of a study of the process of material grinding in roller aggregates with various kinematic features. As the object of research, the design of a vibroroller unit is selected, which has great prospects for use in production. A characteristic feature of this unit is a significant influence on the grinding process of inertia forces. As the main method of research in relation to the movement of the working bodies of the roller and vibroroller shredder and the crushed material, a method of modeling is adopted. It is presented an approximate analysis of the interaction of the crushed material in roll units with rolls. The crushed material is modeled by a set of horizontal elementary layers. At the first stage, the material is crushed in rolls with constant kinematic parameters. Analytical dependencies of the roll pressure on the material are established. At the second stage, the grinding of materials in a vibroroller shredder is considered. A distinctive feature of the vibroroller shredder is the presence of an eccentrically installed roll. The variant is presented when the eccentric performs a curvilinear translational motion, and the roll performs harmonic fluctuation (vibrations) along the coordinate axes with an amplitude of e. The resulting inertia forces and oscillatory motions of the roll are considered. The analysis of the total force in the unit under consideration, which makes it possible to implement crushing-shear and vibration effects on the crushed material, is carried out. The force interaction of the roll with the material is described by two systems of forces: the elastic forces resulting from the contraction of the model layers according to Hookeβs law, and the forces caused by the vibration of the roll (inertia forces). The results obtained are of practical importance in the design of roller units and vibration equipment, as well as for the analysis of the operation of such designs of grinders.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π² Π²Π°Π»ΠΊΠΎΠ²ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠ°Ρ
Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΠΌΠΈ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ±ΡΠ°Π½Π° ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π²ΠΈΠ±ΡΠΎΠ²Π°Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°Π³ΡΠ΅Π³Π°ΡΠ°, ΠΈΠΌΠ΅ΡΡΠ΅Π³ΠΎ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ Π°Π³ΡΠ΅Π³Π°ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅ΡΡ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ΅Π½ΠΈΡ ΡΠΈΠ» ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΈΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π±ΠΎΡΠΈΡ
ΠΎΡΠ³Π°Π½ΠΎΠ² Π²Π°Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈ Π²ΠΈΠ±ΡΠΎΠ²Π°Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠΈΡΠ΅Π»Ρ ΠΈ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π² Π²Π°Π»ΠΊΠΎΠ²ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠ°Ρ
Ρ Π²Π°Π»ΠΊΠ°ΠΌΠΈ. ΠΠ·ΠΌΠ΅Π»ΡΡΠ°Π΅ΠΌΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΌΠΎΠ΄Π΅Π»ΠΈΡΡΠ΅ΡΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π². ΠΠ° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π² Π²Π°Π»ΠΊΠ°Ρ
Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π²Π°Π»ΠΊΠΎΠ² Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π». ΠΠ° Π²ΡΠΎΡΠΎΠΌ ΡΡΠ°ΠΏΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π² Π²ΠΈΠ±ΡΠΎΠ²Π°Π»ΠΊΠΎΠ²ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠΈΡΠ΅Π»Π΅. ΠΡΠ»ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ Π²ΠΈΠ±ΡΠΎΠ²Π°Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠΈΡΠ΅Π»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠΊΡΡΠ΅Π½ΡΡΠΈΡΠ½ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π°Π»ΠΊΠ°. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π²Π°ΡΠΈΠ°Π½Ρ, ΠΊΠΎΠ³Π΄Π° ΡΠΊΡΡΠ΅Π½ΡΡΠΈΠΊ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ-ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π° Π²Π°Π»ΠΎΠΊ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ (Π²ΠΈΠ±ΡΠ°ΡΠΈΠΈ) Π²Π΄ΠΎΠ»Ρ ΠΎΡΠ΅ΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ Ρ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ Π΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠ΅ ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠΈΠ»Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π°Π»ΠΊΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΈΠ»ΠΈΡ Π² ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌ Π°Π³ΡΠ΅Π³Π°ΡΠ΅, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅ΠΌ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ ΡΠ°Π·Π΄Π°Π²Π»ΠΈΠ²Π°ΡΡΠ΅-ΡΠ΄Π²ΠΈΠ³ΠΎΠ²ΠΎΠ΅ ΠΈ Π²ΠΈΠ±ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΈΠ·ΠΌΠ΅Π»ΡΡΠ°Π΅ΠΌΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π». Π‘ΠΈΠ»ΠΎΠ²ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π²Π°Π»ΠΊΠ° Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π΄Π²ΡΠΌΡ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ ΡΠΈΠ»: ΡΠΈΠ»Π°ΠΌΠΈ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠΌΠΈ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΠΊΠ°, ΠΈ ΡΠΈΠ»Π°ΠΌΠΈ, Π²ΡΠ·Π²Π°Π½Π½ΡΠΌΠΈ Π²ΠΈΠ±ΡΠ°ΡΠΈΠ΅ΠΉ Π²Π°Π»ΠΊΠ° (ΡΠΈΠ»Π°ΠΌΠΈ ΠΈΠ½Π΅ΡΡΠΈΠΈ). ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΡΡ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π²Π°Π»ΠΊΠΎΠ²ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ² ΠΈ Π²ΠΈΠ±ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΈΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ°Π±ΠΎΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΠΈΠ·ΠΌΠ΅Π»ΡΡΠΈΡΠ΅Π»Π΅ΠΉ
EB1 Is Required for Spindle Symmetry in Mammalian Mitosis
Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells
Combination immunotherapy and active-specific tumor cell vaccination augments anti-cancer immunity in a mouse model of gastric cancer
<p>Abstract</p> <p>Background</p> <p>Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg) transgenic mouse.</p> <p>Methods</p> <p>Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST). Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls.</p> <p>Results</p> <p>LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+ </sup>T cells (Tregs).</p> <p>Conclusions</p> <p>Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol.</p
- β¦