5 research outputs found
Pemendakan logam karbonat II: kesan kehadiran ion ferik
lonferik (Fe3+) wujud sebagai salah satu ion logam pencemar dalam air sisa dari industri besi keluli dan juga eletropenyaduran. Walaupun ia wujud sebagai logam pencemar, ion ferik mempunyai fungsi yang tersembunyi iaitu boleh bertindak sebagai penggumpal atau penjerap. Objektif utama kajian ini adalah untuk mengkaji kesan ion ferik ke atas kebolehlarutan logam dalam pemendakan karbonat air sisa logam bercampur. Berdasarkan keputusan yang diperolehi, kehadiran ion Fe3+ didapati berupaya meningkatkan kecekapan proses penyingkiran logam. Kebolehlarutan minimum setiap logam dalam air sisa logam bercampur dengan kehadiran ion Fe3+ adalah jauh lebih rendah berbanding dengan kebolehlarutan minimum setiap logam dalam sistem logam individu ataupun dalam campuran logam tanpa kehadiran ion Fe3+. Julat kebolehlarutan minimum untuk ion logam kromium, kuprum, nikel, plumbum dan zink yang disingkirkan secara bercampur dengan kehadiran ionferik masing-masing adalah 0.005-0.287 mg/L, 0.007-0.155 mg/L, 0.017-0.117 mg/L, 0.004-0.143 mg/L dan 0.030-0.135 mg/L. Namun begitu, julat pH optimum bagi proses penyingkiran semua logam dalam sistem air sisa logam bercampur dengan kehadiran ion Fe3+ tidak menunjukkan perbezaan yang ketara jika dibandingkan dengan julat pH optimum untuk proses penyingkiran logam tanpa kehadiran ion ferik. Julat pH optimum untuk pemendakan semua logam dalam air sisa logam bercampur secara serentak dengan kehadiran ion ferik adalah masih kekal pad julat pH 8.0 - 11.0. Selain itu, proses penyingkiran semua logam dalam sistem logam bercampur dengan kehadiran ion Fe3+ didapati bermula pada nilai pH yang lebih rendah berbanding dengan dalam sistem logam individu
Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy
Floating aquatic macrophytes have a high level of proficiency in the removal of various contaminants, particularly nutrients, from wastewater. Due to their rapid growth rates, it is imperative to ensure the safe removal of the final biomass from the system. The ultimate macrophyte biomass is composed of lignocellulose and has enhanced nutritional and energy properties. Consequently, it can serve as a viable source material for applications such as the production of bioenergy, fertilizer and animal feed. However, its use remains limited, and in-depth studies are scarce. Here, we provide a comprehensive analysis of floating aquatic macrophytes and their efficacy in the elimination of heavy metals, nutrients and organic pollutants from various types of wastewater. This study offers a wide-ranging scrutiny of the potential use of plant biomasses as feedstock for bioenergy generation, focusing on both biochemical and thermochemical conversion processes. In addition, we provide information regarding the conversion of biomass into animal feed, focusing on ruminants, fish and poultry, the manufacture of fertilizers and the use of treated water. Overall, we offer a clear idea of the technoeconomic benefits of using macrophytes for the treatment of wastewater and the challenges that need to be rectified to make this cradle-to-cradle concept more efficient
Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs’ application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved