6 research outputs found

    Bond and charge density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity

    Full text link
    We report two surprising results regarding the nature of the spatial broken symmetries in the two-dimensional (2D), quarter-filled band with strong electron-electron interactions. First, in direct contradiction to the predictions of one-electron theory, we find a coexisting ``bond-order and charge density wave'' (BCDW) insulating ground state in the 2D rectangular lattice for all anisotropies, including the isotropic limit. Second, we find that the BCDW further coexists with a spin-density wave (SDW) in the range of large anisotropy. Further, in contrast to the interacting half-filled band, in the interacting quarter-filled band there are two transitions: first, a similar singlet-to-AFM/SDW transition for large anisotropy and second, an AFM/SDW-to-singlet transition at smaller anisotropy. We discuss how these theoretical results apply to the insulating states that are proximate to the superconducting states of 2:1 cationic charge-transfer solids (CTS). An important consequence of this work is the suggestion that organic superconductivity is related to the proximate Coulomb-induced BCDW, with the SDW that coexists for large anisotropies being also a consequence of the BCDW, rather than the driver of superconductivity.Comment: 29 pages, 18 eps figures. Revised with new appendices; to appear in Phys. Rev. B 62, Nov 15, 200

    \eta-superconductivity in the Hubbard chain with pair hopping

    Full text link
    The ground state phase diagram of the 1D Hubbard chain with pair-hopping interaction is studied. The analysis of the model is performed using the continuum-limit field theory approach and exact diagonalization studies. At half-filling the phase diagram is shown to consist of two superconducting states with Cooper pair center-of-mass momentum Q=0 (BCS-\eta_0 phase) and Q=\pi (\eta_\pi-phase) and four insulating phases corresponding to the Mott antiferromagnet, the Peierls dimerized phase, the charge-density-wave (CDW) insulator as well as an unconventional insulating phase characterized by the coexistence of a CDW and a bond-located staggered magnetization. Away from half-filling the phase diagram consists of the superconducting BCS-\eta_0 and \eta_\pi phases and the metallic Luttinger-liquid phase. The BCS-\eta_0 phase exhibits smooth crossover from a weak-coupling BCS type to a strong coupling local-pair regime. The \eta_\pi phase shows properties of the doublon (zero size Cooper pair) superconductor with Cooper pair center-of-mass momentum Q=\pi. The transition into the \eta_\pi- paired state corresponds to an abrupt change in the groundstate structure. After the transition the conduction band is completely destroyed and a new \eta_\pi-pair band corresponding to the strongly correlated doublon motion is created.Comment: 15 pages Revtex, 15 embedded eps figure
    corecore