242 research outputs found
GRAVITY: The AO-Assisted, Two-Object Beam-Combiner Instrument
We present the proposal for the infrared adaptive optics (AO) assisted,
two-object, high-throughput, multiple-beam-combiner GRAVITY for the VLTI. This
instrument will be optimized for phase-referenced interferometric imaging and
narrow-angle astrometry of faint, red objects. Following the scientific
drivers, we analyze the VLTI infrastructure, and subsequently derive the
requirements and concept for the optimum instrument. The analysis can be
summarized with the need for highest sensitivity, phase referenced imaging and
astrometry of two objects in the VLTI beam, and infrared wavefront-sensing.
Consequently our proposed instrument allows the observations of faint, red
objects with its internal infrared wavefront sensor, pushes the optical
throughput by restricting observations to K-band at low and medium spectral
resolution, and is fully enclosed in a cryostat for optimum background
suppression and stability. Our instrument will thus increase the sensitivity of
the VLTI significantly beyond the present capabilities. With its two fibers per
telescope beam, GRAVITY will not only allow the simultaneous observations of
two objects, but will also push the astrometric accuracy for UTs to 10
micro-arcsec, and provide simultaneous astrometry for up to six baselines.Comment: 12 pages, to be published in the Proceedings of the ESO Workshop on
"The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd
Generation VLTI Instrumentation", eds. F. Paresce, A. Richichi, A. Chelli and
F. Delplancke, held in Garching, Germany, 4-8 April 200
ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics
The sodium laser guide star adaptive optics system ALFA has been constructed
at the Calar Alto 3.5-m telescope. Following the first detection of the laser
beacon on the wavefront sensor in 1997 the system is now being optimized for
best performance. In this contribution we discuss the current status of the
launch beam and the planned improvements and upgrades. We report on the
performance level achieved when it is used with the adaptive optics system, and
relate various aspects of our experience during operation of the system. We
have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive
Optical System Technologies, March 199
Reaching micro-arcsecond astrometry with long baseline optical interferometry; application to the GRAVITY instrument
A basic principle of long baseline interferometry is that an optical path
difference (OPD) directly translates into an astrometric measurement. In the
simplest case, the OPD is equal to the scalar product between the vector
linking the two telescopes and the normalized vector pointing toward the star.
However, a too simple interpretation of this scalar product leads to seemingly
conflicting results, called here "the baseline paradox". For micro-arcsecond
accuracy astrometry, we have to model in full the metrology measurement. It
involves a complex system subject to many optical effects: from pure baseline
errors to static, quasi-static and high order optical aberrations. The goal of
this paper is to present the strategy used by the "General Relativity Analysis
via VLT InTerferometrY" instrument (GRAVITY) to minimize the biases introduced
by these defects. It is possible to give an analytical formula on how the
baselines and tip-tilt errors affect the astrometric measurement. This formula
depends on the limit-points of three type of baselines: the wide-angle
baseline, the narrow-angle baseline, and the imaging baseline. We also,
numerically, include non-common path higher-order aberrations, whose amplitude
were measured during technical time at the Very Large Telescope Interferometer.
We end by simulating the influence of high-order common-path aberrations due to
atmospheric residuals calculated from a Monte-Carlo simulation tool for
Adaptive optics systems. The result of this work is an error budget of the
biases caused by the multiple optical imperfections, including optical
dispersion. We show that the beam stabilization through both focal and pupil
tracking is crucial to the GRAVITY system. Assuming the instrument pupil is
stabilized at a 4 cm level on M1, and a field tracking below 0.2, we
show that GRAVITY will be able to reach its objective of 10as accuracy.Comment: 14 pages. Accepted by A&
The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI
Interferometric measurements of optical path length differences of stars over
large baselines can deliver extremely accurate astrometric data. The
interferometer GRAVITY will simultaneously measure two objects in the field of
view of the Very Large Telescope Interferometer (VLTI) of the European Southern
Observatory (ESO) and determine their angular separation to a precision of 10
micro arcseconds in only 5 minutes. To perform the astrometric measurement with
such a high accuracy, the differential path length through the VLTI and the
instrument has to be measured (and tracked since Earth's rotation will
permanently change it) by a laser metrology to an even higher level of accuracy
(corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path
techniques are used for nanometer precision measurements, but with these
methods it is difficult to track the full beam size and to follow the light
path up to the primary mirror of the telescope. Here, we present the
preliminary design of a differential path metrology system, developed within
the GRAVITY project. It measures the instrumental differential path over the
full pupil size and up to the entrance pupil location. The differential phase
is measured by detecting the laser fringe pattern both on the telescopes'
secondary mirrors as well as after reflection at the primary mirror. Based on
our proposed design we evaluate the phase measurement accuracy based on a full
budget of possible statistical and systematic errors. We show that this
metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres
Atmospheric Turbulence Compensation with Laser Phase Shifting Interferometry
Laser guide stars with adaptive optics allow astronomical image correction in
the absence of a natural guide star. Single guide star systems with a star
created in the earth's sodium layer can be used to correct the wavefront in the
near infrared spectral regime for 8-m class telescopes. For possible future
telescopes of larger sizes, or for correction at shorter wavelengths, the use
of a single guide star is ultimately limited by focal anisoplanatism that
arises from the finite height of the guide star. To overcome this limitation we
propose to overlap coherently pulsed laser beams that are expanded over the
full aperture of the telescope, traveling upwards along the same path which
light from the astronomical object travels downwards. Imaging the scattered
light from the resultant interference pattern with a camera gated to a certain
height above the telescope, and using phase shifting interferometry we have
found a method to retrieve the local wavefront gradients. By sensing the
backscattered light from two different heights, one can fully remove the cone
effect, which can otherwise be a serious handicap to the use of laser guide
stars at shorter wavelengths or on larger telescopes. Using two laser beams
multiconjugate correction is possible, resulting in larger corrected fields.
With a proper choice of laser, wavefront correction could be expanded to the
visible regime and, due to the lack of a cone effect, the method is applicable
to any size of telescope. Finally the position of the laser spot could be
imaged from the side of the main telescope against a bright background star to
retrieve tip-tilt information, which would greatly improve the sky coverage of
the system.Comment: 11 pages, 10 figure
GRAVITY: The adaptive optics assisted, two object beam combiner for the VLTI
We present the adaptive optics assisted, near-infrared VLTI instrument -
GRAVITY - for precision narrow-angle astrometry and interferometric phase
referenced imaging of faint objects. Precision astrometry and phase-referenced
interferometric imaging will realize the most advanced vision of
optical/infrared interferometry with the VLT. Our most ambitious science goal
is to study motions within a few times the event horizon size of the Galactic
Center massive black hole and to test General Relativity in its strong field
limit. We define the science reference cases for GRAVITY and derive the top
level requirements for GRAVITY. The installation of the instrument at the VLTI
is planned for 2012.Comment: 9 pages, Advances in Stellar Interferometry, SPIE Proc. Vol. 6268,
626811 (2006
- …