687 research outputs found

    Alcohol Interventions for Trauma Patients Treated in Emergency Departments and Hospitals: A Cost Benefit Analysis

    Get PDF
    Summarizes a study of whether screening for problem drinking and interventions to reduce alcohol intake in hospital trauma centers reduce the direct cost of injury-related health care. Compares the costs of injury recidivism with and without intervention

    Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations

    Get PDF
    Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity

    N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations

    Get PDF
    The N-terminal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) catalyzes the hydrolytic deactivation of the lipid messenger palmitoylethanolamide (PEA), with optimal activity at acidic pH. Using the crystal structure of human NAAA as a starting point, we investigated the catalytic mechanism of PEA hydrolysis with a multiscale approach based on classic molecular dynamics (MD) and quantum mechanical/molecular mechanics (QM/MM) simulations coupled with enhanced sampling and path-collective variables (PCVs). The proton configuration of the catalytic nucleophile, Cys126, and of the surrounding carboxylates was critical to preserve the active site architecture. A stable Michaelis complex was then used to reconstruct the free-energy surfaces of NAAA acylation and deacylation during PEA hydrolysis. Acylation emerged as the critical step, with Cys126 acting both as an acid, to protonate the ethanolamine leaving group, and as a nucleophile, to attack the PEA carbonyl carbon. The ethanol fragment of PEA did not appear to play an indispensable role in acylation, a result further supported by kinetic experiments showing that NAAA hydrolyzes palmitoyl methyl amide (PMA) with high catalytic efficiency. Our multiscale approach identified a distinctive protonation state and catalytic mechanism for NAAA which accounts for pH-dependent activity, mutagenesis data, and mechanism of covalent inhibitors

    Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats

    Get PDF
    Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats

    The impact of trauma-center care on mortality and function following pelvic ring and acetabular injuries

    Get PDF
    ABSTRACT Background: Lower mortality and improved physical function following major polytrauma have been associated with treatment at level-1 trauma centers (TC) compared with that at non-trauma centers (NTC). This study investigates the impact of TC care on outcomes after pelvic and acetabular injuries. Methods: Mortality and quality of life-related measures were compared among patients treated in 18 hospitals with level-1 trauma centers and 51 hospitals without trauma centers in 14 U.S. states. Complete data were obtained on 829 adult trauma patients (18-84 years old) with at least one pelvic ring or acetabular injury (OTA 61 or 62). We used inverse probability of treatment weighting to adjust for observable confounding. Results: After adjustment for case mix, in-hospital mortality was significantly lower at TC versus NTC (RR 0.10, 95% CI 0.02-0.47), as was death by 90 days (RR 0.10, 95% CI 0.02-0.47), and one year (RR 0.21, 95% CI 0.06-0.76) for patients with more severe acetabular injuries (OTA 62-B or 62-C). Patients with combined pelvic ring and acetabular injuries treated at TC had lower mortality by 90 days (RR 0.34, 95% CI 0.14-0.82) and one year (RR 0.30 95% CI 0.14-0.68). Care at TC was also associated with mortality risk reduction for those with unstable pelvic ring injuries (OTA 61-B or 61-C) at one year (RR 0.21, 95%CI 0.06-0.76). Seventy-eight percent of included subjects discharged alive was available for interview at twelve months. Average absolute differences in SF-36 physical functioning and Musculoskeletal Functional Assessment at one year were 11.4 (95%CI 5.3 – 17.4) and 13.2 (1.7 – 24.7) respectively, indicating statistically and clinically significant improved outcomes with TC treatment for more severe acetabular injuries. Conclusions: Mortality is reduced for patients with unstable pelvic and severe acetabular injuries when care is provided in a TC compared to NTC. Moreover, those with severe acetabular fractures experience improved physical function at one year. Patients with these injuries represent a well-defined subset of trauma patients that should be preferentially triaged or transferred to a Level-1 trauma center

    New Coumarin derivatives as cholinergic and cannabinoid system modulators

    Get PDF
    In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation

    N-(Anilinoethyl)amide Melatonergic Ligands with Improved Water Solubility and Metabolic Stability

    Get PDF
    The MT2-selective melatonin receptor ligand UCM765 (N-(2-((3-methoxyphenyl)(phenyl)amino)ethyl)acetamide), showed interesting sleep inducing, analgesic and anxiolytic properties in rodents, but suffers from low water solubility and modest metabolic stability. To overcome these limitations, different strategies were investigated, including modification of metabolically liable sites, introduction of hydrophilic substituents and design of more basic derivatives. Thermodynamic solubility, microsomal stability and lipophilicity of new compounds were experimentally evaluated, together with their MT1 and MT2 binding affinities. Introduction of a m-hydroxymethyl substituent on the phenyl ring of UCM765 and replacement of the replacement of the N,N-diphenyl-amino scaffold with a N-methyl-N-phenyl-amino one led to highly soluble compounds with good microsomal stability and receptor binding affinity. Docking studies into the receptor crystal structure provided a rationale for their binding affinity. Pharmacokinetic characterization in rats highlighted higher plasma concentrations for the N-methyl-N-phenyl-amino derivative, consistent with its improved microsomal stability and makes this compound worthy of consideration for further pharmacological investigation

    A Toy Model for Testing Finite Element Methods to Simulate Extreme-Mass-Ratio Binary Systems

    Full text link
    Extreme mass ratio binary systems, binaries involving stellar mass objects orbiting massive black holes, are considered to be a primary source of gravitational radiation to be detected by the space-based interferometer LISA. The numerical modelling of these binary systems is extremely challenging because the scales involved expand over several orders of magnitude. One needs to handle large wavelength scales comparable to the size of the massive black hole and, at the same time, to resolve the scales in the vicinity of the small companion where radiation reaction effects play a crucial role. Adaptive finite element methods, in which quantitative control of errors is achieved automatically by finite element mesh adaptivity based on posteriori error estimation, are a natural choice that has great potential for achieving the high level of adaptivity required in these simulations. To demonstrate this, we present the results of simulations of a toy model, consisting of a point-like source orbiting a black hole under the action of a scalar gravitational field.Comment: 29 pages, 37 figures. RevTeX 4.0. Minor changes to match the published versio
    • …
    corecore