23,084 research outputs found
Giant radiation heat transfer through the micron gaps
Near-field heat transfer between two closely spaced radiating media can
exceed in orders radiation through the interface of a single black body. This
effect is caused by exponentially decaying (evanescent) waves which form the
photon tunnel between two transparent boundaries. However, in the mid-infrared
range it holds when the gap between two media is as small as few tens of
nanometers. We propose a new paradigm of the radiation heat transfer which
makes possible the strong photon tunneling for micron thick gaps. For it the
air gap between two media should be modified, so that evanescent waves are
transformed inside it into propagating ones. This modification is achievable
using a metamaterial so that the direct thermal conductance through the
metamaterial is practically absent and the photovoltaic conversion of the
transferred heat is not altered by the metamaterial.Comment: 4 pages, 3 figure
Proximity Effects in Radiative Transfer
Though the dependence of near-field radiative transfer on the gap between two
planar objects is well understood, that between curved objects is still
unclear. We show, based on the analysis of the surface polariton mediated
radiative transfer between two spheres of equal radii and minimum gap ,
that the near--field radiative transfer scales as as
and as for larger values of up to the far--field limit. We
propose a modified form of the proximity approximation to predict near--field
radiative transfer between curved objects from simulations of radiative
transfer between planar surfaces.Comment: 5 journal pages, 4 figure
Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength
Modeling and investigating the thermalization of microscopic objects with
arbitrary shape from first principles is of fundamental interest and may lead
to technical applications. Here, we study, over a large temperature range, the
thermalization dynamics due to far-field heat radiation of an individual,
deterministically produced silica fiber with a predetermined shape and a
diameter smaller than the thermal wavelength. The temperature change of the
subwavelength-diameter fiber is determined through a measurement of its optical
path length in conjunction with an ab initio thermodynamic model of the fiber
structure. Our results show excellent agreement with a theoretical model that
considers heat radiation as a volumetric effect and takes the emitter shape and
size relative to the emission wavelength into account
Constraining the History of the Sagittarius Dwarf Galaxy Using Observations of its Tidal Debris
We present a comparison of semi-analytic models of the phase-space structure
of tidal debris with observations of stars associated with the Sagittarius
dwarf galaxy (Sgr). We find that many features in the data can be explained by
these models. The properties of stars 10-15 degrees away from the center of Sgr
--- in particular, the orientation of material perpendicular to Sgr's orbit
(c.f. Alard 1996) and the kink in the velocity gradient (Ibata et al 1997) ---
are consistent with those expected for unbound material stripped during the
most recent pericentric passage ~50 Myrs ago. The break in the slope of the
surface density seen by Mateo, Olszewski & Morrison (1998) at ~ b=-35 can be
understood as marking the end of this material. However, the detections beyond
this point are unlikely to represent debris in a trailing streamer, torn from
Sgr during the immediately preceding passage ~0.7 Gyrs ago, but are more
plausibly explained by a leading streamer of material that was lost more that 1
Gyr ago and has wrapped all the way around the Galaxy. The observations
reported in Majewski et al (1999) also support this hypothesis. We determine
debris models with these properties on orbits that are consistent with the
currently known positions and velocities of Sgr in Galactic potentials with
halo components that have circular velocities v_circ=140-200 km/s. The best
match to the data is obtained in models where Sgr currently has a mass of ~10^9
M_sun and has orbited the Galaxy for at least the last 1 Gyr, during which time
it has reduced its mass by a factor of 2-3, or luminosity by an amount
equivalent to ~10% of the total luminosity of the Galactic halo. These numbers
suggest that Sgr is rapidly disrupting and unlikely to survive beyond a few
more pericentric passages.Comment: 19 pages, 5 figures, accepted to Astronomical Journa
Self-Dual N=8 Supergravity as Closed N=2(4) Strings
As open N=2 or 4 strings describe self-dual N=4 super Yang-Mills in 2+2
dimensions, the corresponding closed (heterotic) strings describe self-dual
ungauged (gauged) N=8 supergravity. These theories are conveniently formulated
in a chiral superspace with general supercoordinate and local OSp(8|2) gauge
invariances. The super-light-cone and covariant-component actions are analyzed.
Because only half the Lorentz group is gauged, the gravity field equation is
just the vanishing of the torsion.Comment: 17 pg., (uuencoded dvi file; revision: forgot 1 stupid term in the
last equation) ITP-SB-92-3
- …