4,115 research outputs found

    Comment on "Fock-Darwin States of Dirac Electrons in Graphene-Based Artificial Atoms"

    Full text link
    Chen, Apalkov, and Chakraborty (Phys. Rev. Lett. 98, 186803 (2007)) have computed Fock-Darwin levels of a graphene dot by including only basis states with energies larger than or equal to zero. We show that their results violate the Hellman-Feynman theorem. A correct treatment must include both positive and negative energy basis states. Additional basis states lead to new energy levels in the optical spectrum and anticrossings between optical transition lines.Comment: 1 page, 1 figure, accepted for publication in PR

    Two-component theory of a droplet of electrons in half-filled Landau level

    Full text link
    We have investigated low energy excitations of a disk of electrons in half-filled Landau level using trail wave function and small-size exact diagonalization approaches. We have constructed a set of many-body basis states that describe correctly the low energy excitations. In this theory a droplet consists of two types of composite fermion liquids, and suggests that a droplet can support an edge magnetoplasmon and low energy droplet excitations. A possibility of measuring these excitations in a quantum dot is discussed.Comment: Figure1 is available from the authors upon request. Three eps files are attached to the tex fil

    Edge and bulk merons in double quantum dots with spontaneous interlayer phase coherence

    Full text link
    We have investigated nucleation of merons in double quantum dots when a lateral distortion with a reflection symmetry is present in the confinement potential. We find that merons can nucleate both inside and at the edge of the dots. In addition to these merons, our results show that electron density modulations can be also present inside the dots. An edge meron appears to have approximately a half integer winding number.Comment: 5 pages, 4 figures, Proceedings of 17th International Conference on High Magnetic Fields in Semiconductor Physic
    • …
    corecore