24 research outputs found

    A Factorization Algorithm for G-Algebras and Applications

    Full text link
    It has been recently discovered by Bell, Heinle and Levandovskyy that a large class of algebras, including the ubiquitous GG-algebras, are finite factorization domains (FFD for short). Utilizing this result, we contribute an algorithm to find all distinct factorizations of a given element fGf \in \mathcal{G}, where G\mathcal{G} is any GG-algebra, with minor assumptions on the underlying field. Moreover, the property of being an FFD, in combination with the factorization algorithm, enables us to propose an analogous description of the factorized Gr\"obner basis algorithm for GG-algebras. This algorithm is useful for various applications, e.g. in analysis of solution spaces of systems of linear partial functional equations with polynomial coefficients, coming from G\mathcal{G}. Additionally, it is possible to include inequality constraints for ideals in the input

    Geometric Interpretation of the Mixed Invariants of the Riemann Spinor

    Get PDF
    Mixed invariants are used to classify the Riemann spinor in the case of Einstein-Maxwell fields and perfect fluids. In the Einstein-Maxwell case these mixed invariants provide information as to the relative orientation of the gravitational and electromagnetic principal null directions. Consideration of the perfect fluid case leads to some results about the behaviour of the Bel-Robinson tensor regarded as a quartic form on unit timelike vectors.Comment: 31 pages, AMS-LaTe

    Obtaining a class of Type O pure radiation metrics with a cosmological constant, using invariant operators

    Get PDF
    Using the generalised invariant formalism we derive a class of conformally flat spacetimes whose Ricci tensor has a pure radiation and a Ricci scalar component. The method used is a development of the methods used earlier for pure radiation spacetimes of Petrov types O and N respectively. In this paper we demonstrate how to handle, in the generalised invariant formalism, spacetimes with isotropy freedom and rich Killing vector structure. Once the spacetimes have been constructed, it is straightforward to deduce their Karlhede classification: the Karlhede algorithm terminates at the fourth derivative order, and the spacetimes all have one degree of null isotropy and three, four or five Killing vectors.Comment: 29 page

    Type O pure radiation metrics with a cosmological constant

    Get PDF
    In this paper we complete the integration of the conformally flat pure radiation spacetimes with a non-zero cosmological constant Λ\Lambda, and τ0\tau \ne 0, by considering the case Λ+ττˉ0\Lambda +\tau\bar\tau \ne 0. This is a further demonstration of the power and suitability of the generalised invariant formalism (GIF) for spacetimes where only one null direction is picked out by the Riemann tensor. For these spacetimes, the GIF picks out a second null direction, (from the second derivative of the Riemann tensor) and once this spinor has been identified the calculations are transferred to the simpler GHP formalism, where the tetrad and metric are determined. The whole class of conformally flat pure radiation spacetimes with a non-zero cosmological constant (those found in this paper, together with those found earlier for the case Λ+ττˉ=0\Lambda +\tau\bar\tau = 0) have a rich variety of subclasses with zero, one, two, three, four or five Killing vectors

    Algorithms for computer algebra

    No full text
    xviii, 585 p. : ill. ; 21x30 cm

    GHP: a maple package for performing calculations in the Geroch-Held-Penrose formalism

    Full text link
    We present a new symbolic algebra package, written for Maple, for performing computations in the Geroch-Held-Penrose formalism. We demonstrate the essential features and capabilities of our package by investigating Petrov-D vacuum solutions of Einstein\u27s field equations.<br /
    corecore