209 research outputs found

    RUNX1/ETO blocks selectin-mediated adhesion via epigenetic silencing of PSGL-1

    Get PDF
    RUNX1/ETO (RE),the t(8;21)-derived leukemic transcription factor associated with acute myeloid leukemia (AML) development, deregulates genes involved in differentiation, self-renewal and proliferation. In addition, these cells show differences in cellular adhesion behavior whose molecular basis is not well understood. Here, we demonstrate that RE epigenetically silences the gene encoding P-Selectin Glycoprotein Ligand-1 (PSGL-1) and downregulates PSGL-1 expression in human CD34+ and murine lin-hematopoietic progenitor cells. Levels of PSGL-1 inversely and dose-dependently correlate with RE oncogene levels. However, a DNA-binding defective mutant fails to downregulate PSGL-1. We show by ChIP experiments that the PSGL-1 promoter is a direct target of RE and binding is accompanied by high levels of the repressive chromatin mark histone H3K27me3. In t(8;21)+ Kasumi-1 cells, PSGL-1 expression is completely restored at both the mRNA and cell surface protein levels following RE downregulation with short hairpin RNA (shRNA) or RE inhibition with tetramerization-blocking peptides, and at the promoter H3K27me3 is replaced by the activating chromatin mark H3K9ac as well as by RNA polymerase II. Upregulation of PSGL-1 restores the binding of cells to P- and E-selectin and re-establishes myeloid-specific cellular adhesion while it fails to bind to lymphocyte-specific L-selectin. Overall, our data suggest that the RE oncoprotein epigenetically represses PSGL-1 via binding to its promoter region and thus affects the adhesive behavior of t(8;21)+ AML cells

    Electron scattering from molecules and molecular aggregates of biological relevance

    Get PDF
    In this Topical Review we survey the current state of the art in the study of low energy electron collisions with biologically relevant molecules and molecular clusters. We briefly describe the methods and techniques used in the investigation of these processes and summarise the results obtained so far for DNA constituents and their model compounds, amino acids, peptides and other biomolecules. The applications of the data obtained is briefly described as well as future required developments

    A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program

    Get PDF
    Key Points Increased FOXO1 is oncogenic in human CD34+ cells and promotes preleukemia transition. FOXO1 is required by AE preleukemia cells for the activation of a stem cell molecular program.</jats:p

    Electronic structure of silver-bismuth iodide rudorffite nanomaterials studied by synchrotron radiation soft X-ray photoemission spectroscopy

    Get PDF
    Silver-bismuth iodide (Ag-Bi-I) rudorffites are chemically stable and non-toxic materials that can act as a possible replacement for methylammonium lead halide perovskites in optoelectronic devices. In this report we will present innovative routes for fabrication of AgBi-I nanomaterials, as well as the results of the investigation of the electronic structure of isolated Ag-Bi-I nanoparticles by soft X-ray aerosol photoemission spectroscopy [1, 2]. Aerosol photoemission spectroscopy allows studies of the electronic structure of submicrometer particles that are free from the influence of a substrate or solvent [1-5]. In this approach the aerosol particles can be produced directly from a solution or a colloidal dispersion, which opens a possibility for investigation of a variety of nanosystems that can be produced by wet chemistry methods. This technique relies on the interaction of focused beam of isolated particles with ionizing radiation under high vacuum conditions. In addition, by using tunable synchrotron radiation as an excitation source it is possible to obtain highresolution photoelectron spectra in the investigated photoelectron energy range.X Serbian Ceramic Society Conference - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts; September 26-27, 2022; Belgrad

    RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBP alpha- and AP-1-Mediated Alterations in Enhancer-Promoter Interaction

    Get PDF
    Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21) (q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1- ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1- ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors
    corecore