32 research outputs found

    Measurement of the WW Boson Mass

    Full text link
    A measurement of the mass of the WW boson is presented based on a sample of 5982 WeνW \rightarrow e \nu decays observed in ppp\overline{p} collisions at s\sqrt{s} = 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a fit to the transverse mass spectrum, combined with measurements of the ZZ boson mass, the WW boson mass is measured to be MW=80.350±0.140(stat.)±0.165(syst.)±0.160(scale)GeV/c2M_W = 80.350 \pm 0.140 (stat.) \pm 0.165 (syst.) \pm 0.160 (scale) GeV/c^2.Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures (submitted to PRL

    Second Generation Leptoquark Search in p\bar{p} Collisions at s\sqrt{s} = 1.8 TeV

    Full text link
    We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron ppˉp\bar{p} collider at s\sqrt{s} = 1.8 TeV. This search is based on 12.7 pb1^{-1} of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio β\beta or to neutrino and quark with branching ratio (1β)(1-\beta). We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c2^{2} for β=1\beta = 1 and 89 GeV/c2^{2} for β=0.5\beta = 0.5 at the 95%\ confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-

    Search for W~1Z~2\widetilde{W}_1\widetilde{Z}_2 Production via Trilepton Final States in ppˉp\bar{p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    We have searched for associated production of the lightest chargino, W~1\widetilde{W}_1, and next-to-lightest neutralino, Z~2\widetilde{Z}_2, of the Minimal Supersymmetric Standard Model in ppˉp\bar{p} collisions at \mbox{s\sqrt{s} = 1.8 TeV} using the \D0 detector at the Fermilab Tevatron collider. Data corresponding to an integrated luminosity of 12.5±0.7\pm 0.7 \ipb were examined for events containing three isolated leptons. No evidence for W~1Z~2\widetilde{W}_1\widetilde{Z}_2 pair production was found. Limits on σ(W~1Z~2)\sigma(\widetilde{W}_1\widetilde{Z}_2)Br(W~1lνZ~1)(\widetilde{W}_1\to l\nu\widetilde{Z}_1)Br(Z~2llˉZ~1)(\widetilde{Z}_2\to l\bar{l}\widetilde{Z}_1) are presented.Comment: 17 pages (13 + 1 page table + 3 pages figures). 3 PostScript figures will follow in a UUEncoded, gzip'd, tar file. Text in LaTex format. Submitted to Physical Review Letters. Replace comments - Had to resumbmit version with EPSF directive

    The Azimuthal Decorrelation of Jets Widely Separated in Rapidity

    Get PDF
    This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D{\O}detector during the 1992--1993 collider run of the Fermilab Tevatron at s=\sqrt{s}= 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in αS\alpha_{\scriptscriptstyle S}. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.Comment: 6 pages with 4 figures, all uuencoded and gzippe

    Jet Production via Strongly-Interacting Color-Singlet Exchange in ppˉp\bar{p} Collisions

    Full text link
    A study of the particle multiplicity between jets with large rapidity separation has been performed using the D{\O}detector at the Fermilab Tevatron ppˉp\bar{p} Collider operating at s=1.8\sqrt{s}=1.8 TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is 1.07±0.10(stat)0.13+0.25(syst)1.07 \pm 0.10({\rm stat})^{+ 0.25}_{- 0.13}({\rm syst})%, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of 0.80% (95% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.Comment: 15 pages (REVTeX), 3 PS figs (uuencoded/tar compressed, epsf.sty) Complete postscript available at http://d0sgi0.fnal.gov/d0pubs/journals.html Submitted to Physical Review Letter

    Measurement of the ZZγZZ\gamma and ZγγZ\gamma\gamma Couplings in ppˉp\bar p Collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8TeVwiththeD0detectorattheFermilabTevatronCollider.Afittothetransverseenergyspectrumofthephotoninthesignalevents,basedonthedatasetcorrespondingtoanintegratedluminosityof13.9pb1( TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb^-1 (13.3 pb^-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h^Z_30 < 1.8 (h^Z_40 = 0), and -0.5 < h^Z_40 < 0.5 (h^Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.Comment: 11 pages, 1 table, and 3 figure

    Measurement of the WWγWW\gamma gauge boson couplings in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The WWγWW\gamma gauge boson couplings were measured using ppˉνγ+Xp\bar{p}\to \ell\nu\gamma+X (=e,μ\ell=e,\mu) events at s=1.8\sqrt{s}=1.8 TeV observed with the {D\O} detector at the Fermilab Tevatron Collider. The signal, obtained from the data corresponding to an integrated luminosity of 13.8pb113.8 {\rm pb}^{-1}, agrees well with the Standard Model prediction. A fit to the photon transverse energy spectrum yields limits at the 95% confidence level on the CP--conserving anomalous coupling parameters of 1.6<Δκ<1.8-1.6<\Delta\kappa<1.8 (λ\lambda = 0) and 0.6<λ<0.6-0.6<\lambda<0.6 (Δκ\Delta\kappa = 0).Comment: 16pages (14pages + 2figure pages) Uses ReVTEX Two postscript files for figures will follow immediatel

    W and Z Boson Production in PbarP Collisions at Sqrt(s)=1.8 TeV

    Get PDF
    The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.Comment: 11 pages (including 2 figure pages), in REVTEX. Two PostScript figures are appended in a UUencoded fil

    Determination of the Mass of the W Boson Using the D0 Detector at the Tevatron

    Get PDF
    A measurement of the mass of the W boson is presented which is based on a sample of 5982 W -> e nu decays observed in pbar-p collisions at sqrt(s) = 1.8 TeV with the D0 detector during the 1992-1993 run. From a fit to the transverse mass spectrum, combined with measurements of the Z boson mass, the W boson mass is measured to be M_W = 80.350+-0.140(stat)+-0.165(sys)+-0.160(scale) GeV/c^2. Detailed discussions of the determination of the absolute energy scale, the measured efficiencies, and all systematic uncertainties are presented.Comment: 152 pages, 51 figures in 76 files 2 latex file
    corecore