81 research outputs found

    Pressure-induced amorphization and polyamorphism in one-dimensional single crystal TiO2 nanomaterials

    Full text link
    The structural phase transitions of single crystal TiO2-B nanoribbons were investigated in-situ at high-pressure using the synchrotron X-ray diffraction and the Raman scattering. Our results have shown a pressure-induced amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting in a high density amorphous (HDA) form related to the baddeleyite structure. Upon decompression, the HDA form transforms to a low density amorphous (LDA) form while the samples still maintain their pristine nanoribbon shape. HRTEM imaging reveals that the LDA phase has an {\alpha}-PbO2 structure with short range order. We propose a homogeneous nucleation mechanism to explain the pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our study demonstrates for the first time that PIA and polyamorphism occurred in the one-dimensional (1D) TiO2 nanomaterials and provides a new method for preparing 1D amorphous nanomaterials from crystalline nanomaterials.Comment: 4 figure

    Chemodynamical Properties and Ages of Metal-Poor Stars in S-PLUS

    Get PDF
    Metal-poor stars are key to our understanding of the early stages of chemical evolution in the Universe. New multi-filter surveys, such as the Southern Photometric Local Universe Survey (S-PLUS), are greatly advancing our ability to select low-metallicity stars. In this work, we analyse the chemodynamical properties and ages of 522 metal-poor candidates selected from the S-PLUS data release 3. About 92% of these stars were confirmed to be metal-poor ([Fe/H] 1\leq -1) based on previous medium-resolution spectroscopy. We calculated the dynamical properties of a subsample containing 241 stars, using the astrometry from Gaia Data Release 3. Stellar ages are estimated by a Bayesian isochronal method formalized in this work. We analyse the metallicity distribution of these metal-poor candidates separated into different subgroups of total velocity, dynamical properties, and ages. Our results are used to propose further restrictions to optimize the selection of metal-poor candidates in S-PLUS. The proposed astrometric selection (parallax>0.85\mathrm{parallax}>0.85 mas) is the one that returns the highest fraction of extremely metal-poor stars (16.3% have [Fe/H] 3\leq -3); the combined selection provides the highest fraction of very metal-poor stars (91.0% have [Fe/H] 2\leq -2), whereas the dynamical selection (eccentricity > 0.35 and diskness < 0.75) is better for targetting metal-poor (99.5% have [Fe/H] 1\leq -1). Using only S-PLUS photometric selections, it is possible to achieve selection fractions of 15.6%, 88.5% and 98.3% for metallicities below -3, -2 and -1, respectively. We also show that it is possible to use S-PLUS to target metal-poor stars in halo substructures such as Gaia-Sausage/Enceladus, Sequoia, Thamnos and the Helmi stream.Comment: 18 pages, 13 figures. To be published in MNRAS main journal (accepted 15-may-2023

    Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations

    Full text link
    We have performed accurate ab initio total energy calculations using the full-potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential to systematically investigate elastic properties of 18 stable, meta-stable and hypothetical hexagonal (AlB2-like) metal diborides MB2, where M = Na, Be, Mg, Ca, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Ag and Au. For monocrystalline MB2 the optimized lattice parameters, independent elastic constants (Cij), bulk modules (B), shear modules (G) are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time numerical estimates of a set of elastic parameters of the polycrystalline MB2 ceramics (in the framework of the Voigt-Reuss-Hill approximation), namely bulk and shear modules, compressibility, Young's modules, Poisson's ratio, Lame's coefficients are performed.Comment: 24 pages, 3 figure
    corecore