17 research outputs found

    Generalized Second Law of Thermodynamics on the Event Horizon for Interacting Dark Energy

    Full text link
    Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy. Using the recent observational data we have found that GSLT holds both in quintessence era as well as in phantom era for new age graphic model while for holographic dark energy GSLT is valid only in phantom era.Comment: 8 pages, 2 figure

    The generalized second law of thermodynamics of the universe bounded by the event horizon and modified gravity theories

    Full text link
    In this paper, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic model of the universe has been considered. In the third case the matter in the universe is taken in the form of non-interacting two fluid system as holographic dark energy and dust. Here we study the above cases in the Modified gravity, f(R) gravity.Comment: 9 page

    Outcome of crisis intervention for borderline personality disorder and post traumatic stress disorder: a model for modification of the mechanism of disorder in complex post traumatic syndromes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study investigates the outcome of crisis intervention for chronic post traumatic disorders with a model based on the theory that such crises manifest trauma in the present. The sufferer's behavior is in response to the current perception of dependency and entrapment in a mistrusted relationship. The mechanism of disorder is the sufferer's activity, which aims to either prove or disprove the perception of entrapment, but, instead, elicits more semblances of it in a circular manner. Patients have reasons to keep such activity private from therapy and are barely aware of it as the source of their symptoms.</p> <p>Methods</p> <p>The hypothesis is that the experimental intervention will reduce symptoms broadly within 8 to 24 h from initiation of treatment, compared to treatment as usual. The experimental intervention sidesteps other symptoms to engage patients in testing the trustworthiness of the troubled relationship with closure, thus ending the circularity of their own ways. The study compares 32 experimental subjects with 26 controls at similar crisis stabilization units.</p> <p>Results</p> <p>The results of the Brief Psychiatric Rating Scale (BPRS) supported the hypothesis (both in total score and for four of five subscales), as did results with Client Observation, a pilot instrument designed specifically for the circular behavior targeted by the experimental intervention. Results were mostly non-significant from two instruments of patient self-observation, which provided retrospective pretreatment scores.</p> <p>Conclusions</p> <p>The discussion envisions further steps to ascertain that this broad reduction of symptoms ensues from the singular correction that distinguishes the experimental intervention.</p> <p>Trial registration</p> <p>Protocol Registration System NCT00269139. The PRS URL is <url>https://register.clinicaltrials.gov</url></p

    The influence of ion migration in ferroelectric liquid crystal on the performance of optically addressed spatial light modulators

    Full text link
    Because of the bipolar response of ferroelectric liquid crystals (FLCs) and the asymmetric current-voltage characteristic of most photosensors used to drive optically addressed spatial light modulators (OASLMs), the voltage signal that drives the FLC in an OASLM contains a dc component. This dc component causes ion migration within the FLC and, consequently, ionic buildup at the alignment layers. The separation of ionic charge creates an internal electric field across the FLC that opposes the dc component of the applied field. This phenomenon affects device performance by reducing bistability and contrast ratio. We discuss how the presence of ions in FLC OASLMs leads to these problems and present approaches that we and others have suggested or tried to reduce or circumvent them, including using conducting alignment layers, using a balanced drive voltage, removing ions from the FLC, and using a photosensor with a symmetric current–voltage characteristic.</jats:p

    Self-Assembled Nanomaterials Based on Beta (β3) Tetrapeptides

    No full text
    β 3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β 3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β 3-tetrapeptides Ac-β 3Ala-β 3Leu-β 3Ile-β 3Ala (Ac-β3[ALIA]), Ac-β3Ser-β 3Leu-β 3Ile-β 3Ala (Ac-β3[SLIA]) and Ac-β 3Lys-β 3Leu-β 3Ile-β 3Glu (Ac-β3[KLIE]). β 3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β 3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (~70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β 3[SLIA] and Ac-β 3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm
    corecore