120 research outputs found
Gain Enhancement of a Wide Slot Antenna Using a Second-Order Bandpass Frequency Selective Surface
Gain enhancement of a wide slot antenna over a wide frequency band using a low profile, second order bandpass frequency selective surface (FSS) as a superstrate is presented in this paper. The proposed multilayered FSS with non-resonant unit cells in each layer allows in-phase transmission of waves radiated from the antenna over a 3dB bandwidth of about 50%. The design allows an enhancement of upto 4dBi in the antenna gain over the entire frequency band (5-8GHz) of operation. The FSS provides a very low insertion loss between the two transmission poles along with a linearly decreasing transmission phase over the band. The composite structure shows an impedance bandwidth (-10dB) of 65% with an average gain between 6-8dBi over the frequency band with a peak gain of 9dBi. Measurement results of the fabricated prototype matches well with the predicted values
Modeling of Modified Split-Ring Type Defected Ground Structure and Its Application as Bandstop Filter
The shape of a popular split-ring defected ground structure (DGS) is modified by selecting different width of the sides with respect to microstrip line. The frequency characteristics of proposed DGS unit show an attenuation zero close to the attenuation pole frequency. The unit cell is modeled by 3rd order elliptical lowpass filter and an equivalent circuit is presented accordingly. For proposed DGS, both pole and zero frequencies are obtained at lower values compared to split-ring DGS unit with uniform width. The variation of the width of the sides, parallel to microstrip line influences pole frequency. Two DGS cells with different pole frequencies cascaded under High-Low microstrip line realize a sharp and deep bandstop filter. Three-cascaded cells underneath a highlow impedance microstrip line produce sharper and wider bandstop filter characteristics
A Dual Layer Frequency Selective Surface Reflector for Wideband Applications
A dual-layer, bandstop frequency selective surface (FSS) is presented in this paper for wideband applications. Each layer uses patch type FSS with slots for miniaturization and are cascaded with an air gap in between. The low-profile FSS with unit cell dimension on the order of 0.2λ0×0.2λ0 provides transmission coefficient below -10dB in the frequency range of 4-7 GHz with 56% bandwidth. The FSS exhibits a nearly linear phase variation with frequency in the operating band and can be used as a substrate below planar wide band antennas with bi-directional radiation for enhancing its gain, directivity in the broadside direction as well as shielding it against nearby conductive surfaces such as metal cases, other printed antennas. Detailed design method, equivalent circuit analysis and measurement results of the FSS are presented in this paper
Target Detection: Remote Sensing Techniques for Defence Applications
The tremendous development in remote sensing technology in the recent past has opened up new challenges in defence applications. On important area of such applications is in target detection. This paper describes both classical and newly developed approaches to detect the targets by using remotely-sensed digital images. The classical approach includes statistical classification methods and image processing techniques. The new approach deals with a relatively new sensor technology, namely, synthetic aperture radar (SAR) systems and fast developing tools, like neural networks and multisource data integration for analysis and interpretation. With SAR images, it is possible to detect targets or features of a target that is otherwise not possible. Neural networks and multisource data integration tools also have a great potential in analysing and interpreting remote sensing data for target detection
Comparison of hot-electron transmission in ferromagnetic Ni on epitaxial and polycrystalline Schottky interfaces
The hot-electron attenuation length in Ni is measured as a function of energy
across two different Schottky interfaces viz. a polycrystalline Si(111)/Au and
an epitaxial Si(111)/NiSi_2 interface using ballistic electron emission
microscopy (BEEM). For similarly prepared Si(111) substrates and identical Ni
thickness, the BEEM transmission is found to be lower for the polycrystalline
interface than for the epitaxial interface. However, in both cases, the
hot-electron attenuation length in Ni is found to be the same. This is
elucidated by the temperature-independent inelastic scattering, transmission
probabilities across the Schottky interface, and scattering at dissimilar
interfaces.Comment: 5 pages, 5 figure
Temperature dependent transport characteristics of graphene/n-Si diodes
Realizing an optimal Schottky interface of graphene on Si is challenging, as
the electrical transport strongly depends on the graphene quality and the
fabrication processes. Such interfaces are of increasing research interest for
integration in diverse electronic devices as they are thermally and chemically
stable in all environments, unlike standard metal/semiconductor interfaces. We
fabricate such interfaces with n-type Si at ambient conditions and find their
electrical characteristics to be highly rectifying, with minimal reverse
leakage current (10 A) and rectification of more than . We
extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83
eV for the CVD graphene devices at room temperature. The temperature dependent
electrical characteristics suggest the influence of inhomogeneities at the
graphene/n-Si interface. A quantitative analysis of the inhomogeneity in
Schottky barrier heights is presented using the potential fluctuation model
proposed by Werner and G\"{u}ttler.Comment: 5 pages, 5 figure
Spin communication over 30 m long channels of chemical vapor deposited graphene on SiO
We demonstrate a high-yield fabrication of non-local spin valve devices with
room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as
long as 9 m in platinum-based chemical vapor deposition (Pt-CVD)
synthesized single-layer graphene on SiO/Si substrates. The spin-lifetime
systematically presents a marked minimum at the charge neutrality point, as
typically observed in pristine exfoliated graphene. However, by studying the
carrier density dependence beyond n ~ 5 x 10 cm, via
electrostatic gating, it is found that the spin lifetime reaches a maximum and
then starts decreasing, a behavior that is reminiscent of that predicted when
the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and
relaxation lengths compare well with state-of-the-art results using exfoliated
graphene on SiO/Si, being a factor two-to-three larger than the best values
reported at room temperature using the same substrate. As a result, the spin
signal can be readily measured across 30 m long graphene channels. These
observations indicate that Pt-CVD graphene is a promising material for
large-scale spin-based logic-in-memory applications
Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary
The electrocaloric effect is calculated for PMN-PT relaxor ferroelectric thin film near morphotropic phase boundary composition. Thin film of thickness, ~240 nm, has been deposited using pulsed laser deposition technique on a highly (111) oriented platinized silicon substrate at 700°C and at 100 mtorr oxygen partial pressure. Prior to the deposition of PMN-PT, a template layer of LSCO of thickness, ~60 nm, is deposited on the platinized silicon substrate to hinder the pyrochlore phase formation. The temperature dependent P-E loops were measured at 200 Hz triangular wave operating at the virtual ground mode. Maximum reversible adiabatic temperature change, ΔT = 31 K, was calculated at 140°C for an external applied voltage of 18 V
Dielectric properties of electron irradiated PbZrO<SUB>3</SUB> thin films
The present paper deals with the study of the effects of electron (8 MeV) irradiation on the dielectric and ferroelectric properties of PbZrO3 thin films grown by sol-gel technique. The films were (0.62 µm thick) subjected to electron irradiation using Microtron accelerator (delivered dose 80, 100, 120 kGy). The films were well crystallized prior to and after electron irradiation. However, local amorphization was observed after irradiation. There is an appreciable change in the dielectric constant after irradiation with different delivered doses. The dielectric loss showed significant frequency dispersion for both unirradiated and electron irradiated films. Tc was found to shift towards higher temperature with increasing delivered dose. The effect of radiation induced increase of ε'(T) is related to an internal bias field, which is caused by radiation induced charges trapped at grain boundaries. The double butterfly loop is retained even after electron irradiation to the different delivered doses. The broader hysteresis loop seems to be related to radiation induced charges causing an enhanced space charge polarization. Radiation-induced oxygen vacancies do not change the general shape of the AFE hysteresis loop but they increase Ps of the hysteresis at the electric field forced AFE to FE phase transition. We attribute the changes in the dielectric properties to the structural defects such as oxygen vacancies and radiation induced charges. The shift in TC, increase in dielectric constant, broader hysteresis loop, and increase in Pr can be related to radiation induced charges causing space charge polarization. Double butterfly and hysteresis loops were retained indicative of AFE nature of the films
Filtering DRA Array and Its Applications in MIMO for Sub-6 GHz Band
A dielectric resonator-based filtering array antenna along with multi input - multi output (MIMO) characteristics is represented in this paper. Two rectangular dielectric resonators, together with a filtering power splitter (PS) is used to get a high gain filtering response. The PS, which consists of a simple T-junction 3-dB power splitters and two pairs of band-rejection resonators, provides four transmission zeros outside the passband. Detail study with an equivalent circuit is presented to understand the working principle of the filtering PS. By utilizing this PS, a two element DRA array is designed at sub-6 GHz frequency band (3.20 GHz-3.54 GHz) with an average broadside gain of 7.8 dBi in the passband and four radiation dips outside the passband. The proposed filtering DRA array effectively suppresses the out-of-band signal, delivers sharp selectivity at band edges. Finally, coalescing the two-filtering array, a MIMO antenna system is presented here. The filtering array MIMO antenna gives reasonable port isolation of greater than 20 dB throughout the operating band. All the major diversity parameters to establish MIMO characteristics e.g. envelop correlation coefficient (ECC), diversity gain (DG), channel loss capacity (CCL), and total reflection coefficient (TARC) persists within their tolerable ranges
- …