5,419 research outputs found

    Simulating Supersymmetry with ISAJET 7.0/ ISASUSY 1.0

    Full text link
    We review the physics assumptions and input used in ISAJET~7.0 / ISA\-SUSY~1.0 that are relevant for simulating fundamental processes within the framework of the Minimal Supersymmetric Standard Model (MSSM) at ppˉp\bar p and pppp colliders. After a brief discussion of the underlying MSSM framework, we discuss event simulation and list the sparticle production processes and decay modes that have been incorporated into our calculations. We then describe how to set up and run an ISAJET / ISASUSY job and the user input and output formats. The ISAJET program is sufficiently flexible that some non-minimal supersymmetry scenarios may be simulated as well. Finally, plans for future upgrades which include the extension to e+ee^+ e^- collisions, are listed.Comment: 17 pages, FSU-HEP-930329 UH-511-764-9

    Pion-Pion Phase-Shifts and the Value of Quark-Antiquark Condensate in the Chiral Limit

    Get PDF
    We use low energy pion-pion phase-shifts in order to make distinction between the alternatives for the value of the quark-antiquark condensate B0B_0 in the chiral limit. We will consider the amplitude up to and including O(p4){\cal O}(p^4) contributions within the Standard and Generalized Chiral Perturbation Theory frameworks. They are unitarized by means of Pad\'e approximants in order to fit experimental phase-shifts in the resonance region. As the best fits correspond to α=β=1\alpha = \beta = 1, we conclude that pion-pion phase-shift analysis favors the standard ChPT scenario, which assumes just one, large leading order parameter 0_{_0}.Comment: 5 pages, 3 figures and 1 tabl

    Targeting qubit states using open-loop control

    Get PDF
    We present an open-loop (bang-bang) scheme which drives an open two-level quantum system to any target state, while maintaining quantum coherence throughout the process. The control is illustrated by a realistic simulation for both adiabatic and thermal decoherence. In the thermal decoherence regime, the control achieved by the proposed scheme is qualitatively similar, at the ensemble level, to the control realized by the quantum feedback scheme of Wang, Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous emission of a two-level atom. The performance of the open-loop scheme compares favorably against the quantum feedback scheme with respect to robustness, target fidelity and transition times.Comment: 27 pages, 7 figure

    New summing algorithm using ensemble computing

    Full text link
    We propose an ensemble algorithm, which provides a new approach for evaluating and summing up a set of function samples. The proposed algorithm is not a quantum algorithm, insofar it does not involve quantum entanglement. The query complexity of the algorithm depends only on the scaling of the measurement sensitivity with the number of distinct spin sub-ensembles. From a practical point of view, the proposed algorithm may result in an exponential speedup, compared to known quantum and classical summing algorithms. However in general, this advantage exists only if the total number of function samples is below a threshold value which depends on the measurement sensitivity.Comment: 13 pages, 0 figures, VIth International Conference on Quantum Communication, Measurement and Computing (Boston, 2002

    Improved Search for Heavy Neutrinos in the Decay πeν\pi\rightarrow e\nu

    Get PDF
    A search for massive neutrinos has been made in the decay πe+ν\pi\rightarrow e^+ \nu. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (πe+νh\pi\rightarrow e^+ \nu_h). Upper limits (90 \% C.L.) on the neutrino mixing matrix element Uei2|U_{ei}|^2 in the neutrino mass region 60--135 MeV/c2c^2 were set, which are %representing an order of magnitude improvement over previous results

    Status of the TRIUMF PIENU Experiment

    Full text link
    The PIENU experiment at TRIUMF aims to measure the pion decay branching ratio R=Γ(π+e+νe(γ))/Γ(π+μ+νμ(γ))R={\Gamma}({\pi}^+{\rightarrow}e^+{\nu}_e({\gamma}))/{\Gamma}({\pi}^+{\rightarrow}{\mu}^+{\nu}_{\mu}({\gamma})) with precision <0.1<0.1% to provide a sensitive test of electron-muon universality in weak interactions. The current status of the PIENU experiment is presented.Comment: Talk presented CIPANP2015. 8 pages, LaTeX, 4 eps figure

    Pulse Control of Decoherence with Population Decay

    Full text link
    The pulse control of decoherence in a qubit interacting with a quantum environment is studied with focus on a general case where decoherence is induced by both pure dephasing and population decay. To observe how the decoherence is suppressed by periodic pi pulses, we present a simple method to calculate the time evolution of a qubit under arbitrary pulse sequences consisting of bit-flips and/or phase-flips. We examine the effectiveness of the two typical sequences: bb sequence consisting of only bit-flips, and bp sequence consisting of both bit- and phase-flips. It is shown that the effectiveness of the pulse sequences depends on a relative strength of the two decoherence processes especially when a pulse interval is slightly shorter than qubit-environment correlation times. In the short-interval limit, however, the bp sequence is always more effective than, or at least as effective as, the bb sequence.Comment: 11 pages, 7 figure
    corecore