100 research outputs found

    The last frontier: Catch records of white sharks (carcharodon carcharias) in the northwest pacific ocean

    Get PDF
    White sharks are highly migratory apex predators, globally distributed in temperate, sub-tropical, and tropical waters. Knowledge of white shark biology and ecology has increased recently based on research at known aggregation sites in the Indian, Atlantic, and Northeast Pacific Oceans; however, few data are available for the Northwest Pacific Ocean. This study provides a meta-analysis of 240 observations of white sharks from the Northwest Pacific Ocean between 1951 and 2012. Records comprise reports of bycatch in commercial fisheries, media accounts, personal communications, and documentation of shark-human interactions from Russia (n = 8), Republic of Korea (22), Japan (129), China (32), Taiwan (45), Philippines (1) and Vietnam (3). Observations occurred in all months, excluding October-January in the north (Russia and Republic of Korea) and July-August in the south (China, Taiwan, Philippines, and Vietnam). Population trend analysis indicated that the relative abundance of white sharks in the region has remained relatively stable, but parameterization of a 75% increase in observer effort found evidence of a minor decline since 2002. Reliably measured sharks ranged from 126–602 cm total length (TL) and 16–2530 kg total weight. The largest shark in this study (602 cm TL) represents the largest measured shark on record worldwide. For all countries combined the sex ratio was non-significantly biased towards females (1∶1.1; n = 113). Of 60 females examined, 11 were confirmed pregnant ranging from the beginning stages of pregnancy (egg cases) to near term (140 cm TL embryos). On average, 6.0±2.2 embryos were found per litter (maximum of 10) and gestation period was estimated to be 20 months. These observations confirm that white sharks are present in the Northwest Pacific Ocean year-round. While acknowledging the difficulties of studying little known populations of a naturally low abundance species, these results highlight the need for dedicated research to inform regional conservation and management planning

    Quaternary Selenides EuLnCuSe3: Synthesis, Structures, Properties and In Silico Studies

    Full text link
    In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t’, and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87– 2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The research was supported by the Tyumen region within the framework of the grant agreement in the form of a grant to non-profit organizations no. 89-don dated 07.12.2020. This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0054). This work was supported by state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project Reg. No. 720000Ф.99.1.БЗ85АА13000). The work was conducted within the framework of the budget project № 0287-2021-0013 for the Institute of Chemistry and Chemical Technology SB RAS

    Dirigeant de fait. Définition

    No full text
    International audience(Com. 5 nov. 1991, Chevreux et autres c/ Receveur divisionnaire des impôts)

    Pulsed Field-Induced Magnetization Switching in Antiferromagnetic Ferrihydrite Nanoparticles

    Get PDF
    The dynamic magnetization switching of ferrihydrite nanoparticles has been investigated by a pulsed magnetometer technique in maximum fields Hmax of up to 130 kOe with pulse lengths of 4, 8, and 16 ms. Ferrihydrite exhibits antiferromagnetic ordering and defects cause the uncompensated magnetic moment in nanoparticles; therefore, the behavior typical of magnetic nanoparticles is observed. The dynamic hysteresis loops measured under the above-mentioned conditions show that the use of pulsed fields significantly broadens the temperature region of existence of the magnetic hysteresis and the coercivity can be governed by varying the maximum field and pulse length. This behavior is resulted from the relaxation effects typical of conventional ferro- and ferrimagnetic nanoparticles and the features typical of antiferromagnetic nanoparticles

    Iron Sulfide Nanoparticles: Preparation, Structure, Magnetic Properties

    Get PDF
    The series of iron sulfide nanoparticles (NPs) were synthesized with the polyol mediated process which exploits high-boiling polyalcohol solvents at different boiling temperatures (TB) what determined the NPs phase state from Fe3S4 to FeS. The XRD and HRTEM revealed the content of the Fe3S4 cubic phase to reduce linearly with the TB increase, and at TB=320 ◦C the FeS phase became predominant. Non monotonous coercivity dependence on the NPs phase state is revealed and interpreted

    Iron Sulfide Nanoparticles: Preparation, Structure, Magnetic Properties

    No full text
    The series of iron sulfide nanoparticles (NPs) were synthesized with the polyol mediated process which exploits high-boiling polyalcohol solvents at different boiling temperatures (TB) what determined the NPs phase state from Fe3S4 to FeS. The XRD and HRTEM revealed the content of the Fe3S4 cubic phase to reduce linearly with the TB increase, and at TB=320 ◦C the FeS phase became predominant. Non monotonous coercivity dependence on the NPs phase state is revealed and interpreted
    corecore