5,852 research outputs found

    Quantum random walk of two photons in separable and entangled state

    Full text link
    We discuss quantum random walk of two photons using linear optical elements. We analyze the quantum random walk using photons in a variety of quantum states including entangled states. We find that for photons initially in separable Fock states, the final state is entangled. For polarization entangled photons produced by type II downconverter, we calculate the joint probability of detecting two photons at a given site. We show the remarkable dependence of the two photon detection probability on the quantum nature of the state. In order to understand the quantum random walk, we present exact analytical results for small number of steps like five. We present in details numerical results for a number of cases and supplement the numerical results with asymptotic analytical results

    The geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    Get PDF
    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a ``radiation-reaction field''. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves -- sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.Comment: 12 pages, 6 figure

    Directory of aerospace safety specialized information sources

    Get PDF
    Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered

    Fluctuations in the formation time of ultracold dimers from fermionic atoms

    Full text link
    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via Raman photoassociation. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. Assuming degeneracy of kinetic energies of atoms in the strong coupling limit we find that a heuristic classical stochastic model yields qualitative agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations. Finally we explore effects due to the non-degeneracy of atomic kinetic energies.Comment: 7 pages, 6 figure

    Multimode Hong-Ou-Mandel interference

    Full text link
    We consider multimode two-photon interference at a beam splitter by photons created by spontaneous parametric down-conversion. The resulting interference pattern is shown to depend upon the transverse spatial symmetry of the pump beam. In an experiment, we employ the first-order Hermite-Gaussian modes in order to show that, by manipulating the pump beam, one can control the resulting two-photon interference behavior. We expect these results to play an important role in the engineering of quantum states of light for use in quantum information processing and quantum imaging.Comment: 4 pages, 6 figures, submitted to PR

    Does solar structure vary with solar magnetic activity?

    Full text link
    We present evidence that solar structure changes with changes in solar activity. We find that the adiabatic index, Gamma_1, changes near the second helium ionization, i.e., at a depth of about 0.98 R_sun. We believe that this change is a result of the change in the effective equation of state caused by magnetic fields. Inversions should be able to detect the changes in Gamma_1 if mode sets with reliable and precise high-degree modes are available.Comment: To appear in ApJ Letter

    Quantum key distribution with higher-order alphabets using spatially-encoded qudits

    Full text link
    We propose and demonstrate a quantum key distribution scheme in higher-order dd-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio

    First-order coherence versus entanglement in a nano-mechanical cavity

    Full text link
    The coherence and correlation properties of effective bosonic modes of a nano-mechanical cavity composed of an oscillating mirror and containing an optical lattice of regularly trapped atoms are studied. The system is modeled as a three-mode system, two orthogonal polariton modes representing the coupled optical lattice and the cavity mode, and one mechanical mode representing the oscillating mirror. We examine separately the cases of two-mode and three-mode interactions which are distinguished by a suitable tuning of the mechanical mode to the polariton mode frequencies. In the two-mode case, we find that the occurrence of entanglement between one of the polariton modes and the mechanical mode is highly sensitive to the presence of the first-order coherence between the modes. In particular, the creation of the first-order coherence among the modes is achieved at the expense of entanglement between the modes. In the three-mode case, we show that no entanglement is created between the independent polariton modes if both modes are coupled to the mechanical mode by the parametric interaction. There is no entanglement between the polaritons even if the oscillating mirror is damped by a squeezed vacuum field. The interaction creates the first-order coherence between the polaritons and the degree of coherence can, in principle, be as large as unity. This demonstrates that the oscillating mirror can establish the first-order coherence between two independent thermal modes. A further analysis shows that two independent thermal modes can be made entangled in the system only when one of the modes is coupled to the intermediate mode by a parametric interaction and the other is coupled by a linear-mixing interaction.Comment: Published versio
    • …
    corecore