2,126 research outputs found

    Boundary states for a free boson defined on finite geometries

    Full text link
    Langlands recently constructed a map that factorizes the partition function of a free boson on a cylinder with boundary condition given by two arbitrary functions in the form of a scalar product of boundary states. We rewrite these boundary states in a compact form, getting rid of technical assumptions necessary in his construction. This simpler form allows us to show explicitly that the map between boundary conditions and states commutes with conformal transformations preserving the boundary and the reality condition on the scalar field.Comment: 16 pages, LaTeX (uses AMS components). Revised version; an analogy with string theory computations is discussed and references adde

    Form-factors computation of Friedel oscillations in Luttinger liquids

    Full text link
    We show how to analytically determine for g1/2g\leq 1/2 the "Friedel oscillations" of charge density by a single impurity in a 1D Luttinger liquid of spinless electrons.Comment: Revtex, epsf, 4pgs, 2fig

    Mass Hierarchy Determination Using Neutrinos from Multiple Reactors

    Full text link
    We report the results of Monte Carlo simulations of a medium baseline reactor neutrino experiment. The difference in baselines resulting from the 1 km separations of Daya Bay and Ling Ao reactors reduces the amplitudes of 1-3 oscillations at low energies, decreasing the sensitivity to the neutrino mass hierarchy. A perpendicular detector location eliminates this effect. We simulate experiments under several mountains perpendicular to the Daya Bay/Ling Ao reactors, considering in particular the background from the TaiShan and YangJiang reactor complexes. In general the hierarchy can be determined most reliably underneath the 1000 meter mountain BaiYunZhang, which is 44.5 km from Daya Bay. If some planned reactors are not built then nearby 700 meter mountains at 47-51 km baselines gain a small advantage. Neglecting their low overhead burdens, hills near DongKeng would be the optimal locations. We use a weighted Fourier transform to avoid a spurious dependence on the high energy neutrino spectrum and find that a neural network can extract quantities which determine the hierarchy marginally better than the traditional RL + PV.Comment: 22 pages, added details on the neural network (journal version

    Boundary bound states and boundary bootstrap in the sine-Gordon model with Dirichlet boundary conditions.

    Full text link
    We present a complete study of boundary bound states and related boundary S-matrices for the sine-Gordon model with Dirichlet boundary conditions. Our approach is based partly on the bootstrap procedure, and partly on the explicit solution of the inhomogeneous XXZ model with boundary magnetic field and of the boundary Thirring model. We identify boundary bound states with new ``boundary strings'' in the Bethe ansatz. The boundary energy is also computed.Comment: 25 pages, harvmac macros Report USC-95-001

    Direct Calculation of Breather S Matrices

    Get PDF
    We formulate a systematic Bethe-Ansatz approach for computing bound-state (``breather'') S matrices for integrable quantum spin chains. We use this approach to calculate the breather boundary S matrix for the open XXZ spin chain with diagonal boundary fields. We also compute the soliton boundary S matrix in the critical regime.Comment: 23 pages, LaTeX, 1 eps figur

    Probing Freeze-in Dark Matter via Heavy Neutrino Portal

    Full text link
    We explore the possibility of probing freeze-in dark matter (DM) produced via the right-handed neutrino (RHN) portal using the RHN search experiments. We focus on a simplified framework of minimally-extended type-I seesaw model consisting of only four free parameters, namely the RHN mass, the fermionic DM mass, the Yukawa coupling between the DM and the RHN, and a real singlet scalar mass. We consider two cases for the DM production either via decay of the thermal RHN or via scattering of the bath particles mediated by the RHN. In both cases, we show that for sub-TeV scale DM masses, the allowed model parameter space satisfying the observed DM relic density for freeze-in scenario falls within the reach of current and future collider, beam dump and forward physics facilities looking for feebly-coupled heavy neutrinos.Comment: version matches journal publication, revise

    Edge Critical Behaviour of the 2-Dimensional Tri-critical Ising Model

    Full text link
    Using previous results from boundary conformal field theory and integrability, a phase diagram is derived for the 2 dimensional Ising model at its bulk tri-critical point as a function of boundary magnetic field and boundary spin-coupling constant. A boundary tri-critical point separates phases where the spins on the boundary are ordered or disordered. In the latter range of coupling constant, there is a non-zero critical field where the magnetization is singular. In the former range, as the temperature is lowered, the boundary undergoes a first order transition while the bulk simultaneously undergoes a second order transition.Comment: 6 pages, RevTex, 3 postscript figure

    Neutrino mass hierarchy and octant determination with atmospheric neutrinos

    Full text link
    The recent discovery by the Daya-Bay and RENO experiments, that \theta_{13} is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of \theta_{13} implies that \theta_{23} is likely to be different from \pi/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of \theta_{23}. We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4 sigma with moderate exposure times, and the octant at the level of 2-3 sigma with greater exposure.Comment: 4 pages, 4 figures. Version published in Phys. Rev. Let

    Boundary breathers in the sinh-Gordon model

    Get PDF
    We present an investigation of the boundary breather states of the sinh-Gordon model restricted to a half-line. The classical boundary breathers are presented for a two parameter family of integrable boundary conditions. Restricting to the case of boundary conditions which preserve the \phi --> -\phi symmetry of the bulk theory, the energy spectrum of the boundary states is computed in two ways: firstly, by using the bootstrap technique and subsequently, by using a WKB approximation. Requiring that the two descriptions of the spectrum agree with each other allows a determination of the relationship between the boundary parameter, the bulk coupling constant, and the parameter appearing in the reflection factor derived by Ghoshal to describe the scattering of the sinh-Gordon particle from the boundary.Comment: 16 pages amslate
    corecore