800 research outputs found
A Perturbative Approach to the Relativistic Harmonic Oscillator
A quantum realization of the Relativistic Harmonic Oscillator is realized in
terms of the spatial variable and {\d\over \d x} (the minimal canonical
representation). The eigenstates of the Hamiltonian operator are found (at
lower order) by using a perturbation expansion in the constant . Unlike
the Foldy-Wouthuysen transformed version of the relativistic hydrogen atom,
conventional perturbation theory cannot be applied and a perturbation of the
scalar product itself is required.Comment: 9 pages, latex, no figure
Spacetime structure of the global vortex
We analyse the spacetime structure of the global vortex and its maximal
analytic extension in an arbitrary number of spacetime dimensions. We find that
the vortex compactifies space on the scale of the Hubble expansion of its
worldvolume, in a manner reminiscent of that of the domain wall. We calculate
the effective volume of this compactification and remark on its relevance to
hierarchy resolution with extra dimensions. We also consider strongly
gravitating vortices and derive bounds on the existence of a global vortex
solution.Comment: 19 pages revtex, 2 figures, minor changes, references adde
Quantum correlations in the temporal CHSH scenario
We consider a temporal version of the CHSH scenario using projective
measurements on a single quantum system. It is known that quantum correlations
in this scenario are fundamentally more general than correlations obtainable
with the assumptions of macroscopic realism and non-invasive measurements. In
this work, we also educe some fundamental limitations of these quantum
correlations. One result is that a set of correlators can appear in the
temporal CHSH scenario if and only if it can appear in the usual spatial CHSH
scenario. In particular, we derive the validity of the Tsirelson bound and the
impossibility of PR-box behavior. The strength of possible signaling also turns
out to be surprisingly limited, giving a maximal communication capacity of
approximately 0.32 bits. We also find a temporal version of Hardy's nonlocality
paradox with a maximal quantum value of 1/4.Comment: corrected versio
On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables
In this paper we explore further the connections between convex bodies
related to quantum correlation experiments with dichotomic variables and
related bodies studied in combinatorial optimization, especially cut polyhedra.
Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J.
Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show
that several well known bodies related to cut polyhedra are equivalent to
bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to
represent hidden deterministic behaviors, quantum behaviors, and no-signalling
behaviors. Among other things, our results allow a unique representation of
these bodies, give a necessary condition for vertices of the no-signalling
polytope, and give a method for bounding the quantum violation of Bell
inequalities by means of a body that contains the set of quantum behaviors.
Optimization over this latter body may be performed efficiently by semidefinite
programming. In the second part of the paper we apply these results to the
study of classical correlation functions. We provide a complete list of tight
inequalities for the two party case with (m,n) dichotomic observables when
m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation
inequalities.Comment: 17 pages, 2 figure
Hawking Radiation from AdS Black Holes
We investigate Hawking radiation from black holes in (d+1)-dimensional
anti-de Sitter space. We focus on s-waves, make use of the geometrical optics
approximation, and follow three approaches to analyze the radiation. First, we
compute a Bogoliubov transformation between Kruskal and asymptotic coordinates
and compare the different vacua. Second, following a method due to Kraus,
Parikh, and Wilczek, we view Hawking radiation as a tunneling process across
the horizon and compute the tunneling probablility. This approach uses an
anti-de Sitter version of a metric originally introduced by Painleve for
Schwarzschild black holes. From the tunneling probability one also finds a
leading correction to the semi-classical emission rate arising from the
backreaction to the background geometry. Finally, we consider a spherically
symmetric collapse geometry and the Bogoliubov transformation between the
initial vacuum state and the vacuum of an asymptotic observer.Comment: 13 pages, latex2e, v2: some clarifications and references adde
Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties
If a state is passive for uniformly accelerated observers in n-dimensional
anti-de Sitter space-time (i.e. cannot be used by them to operate a perpetuum
mobile), they will (a) register a universal value of the Unruh temperature, (b)
discover a PCT symmetry, and (c) find that observables in complementary
wedge-shaped regions necessarily commute with each other in this state. The
stability properties of such a passive state induce a "geodesic causal
structure" on AdS and concommitant locality relations. It is shown that
observables in these complementary wedge-shaped regions fulfill strong
additional independence conditions. In two-dimensional AdS these even suffice
to enable the derivation of a nontrivial, local, covariant net indexed by
bounded spacetime regions. All these results are model-independent and hold in
any theory which is compatible with a weak notion of space-time localization.
Examples are provided of models satisfying the hypotheses of these theorems.Comment: 27 pages, 1 figure: dedicated to Jacques Bros on the occasion of his
70th birthday. Revised version: typos corrected; as to appear in J. Math.
Phy
Scalar field quantization on the 2+1 dimensional black hole background
The quantization of a massless conformally coupled scalar field on the 2+1
dimensional Anti de Sitter black hole background is presented. The Green's
function is calculated, using the fact that the black hole is Anti de Sitter
space with points identified, and taking into account the fact that the black
hole spacetime is not globally hyperbolic. It is shown that the Green's
function calculated in this way is the Hartle-Hawking Green's function. The
Green's function is used to compute , which is
regular on the black hole horizon, and diverges at the singularity. A particle
detector response function outside the horizon is also calculated and shown to
be a fermi type distribution. The back-reaction from is calculated exactly and is shown to give rise to a curvature
singularity at and to shift the horizon outwards. For a horizon
develops, shielding the singularity. Some speculations about the endpoint of
evaporation are discussed.Comment: CTP 2243, 24 pages, RevTex. (The backreaction section is extended,
and some confusing notation has been changed
The abolition of the General Teaching Council for England and the future of teacher discipline
With the abolition of the General Teaching Council for England in the 2011 Education Act, this article considers the future of teacher discipline in England. It provides a critique of the changes to the regulation of teacher misconduct and incompetence that draws on a Foucauldian framework, especially concerning the issue of public displays of discipline and the concomitant movement to more hidden forms. In addition, the external context of accountability that accompanies the reforms to teacher discipline are considered including the perfection of the panoptic metaphor presented by the changes to Ofsted practices such as the introduction of zero-notice inspections. The article concludes that the reforms will further move teachers from being occupational professionals to being organisational professionals marking them apart from comparable professions in medicine and law
Comfort radicalism and NEETs: a conservative praxis
Young people who are not in education, employment or training (NEET) are construed by policy makers as a pressing problem about which something should be done. Such young people's lack of employment is thought to pose difficulties for wider society in relation to social cohesion and inclusion and it is feared that they will become a 'lost generation'. This paper(1) draws upon English research, seeking to historicise the debate whilst acknowledging that these issues have a much wider purchase. The notion of NEETs rests alongside longstanding concerns of the English state and middle classes, addressing unruly male working class youth as well as the moral turpitude of working class girls. Waged labour and domesticity are seen as a means to integrate such groups into society thereby generating social cohesion. The paper places the debate within it socio-economic context and draws on theorisations of cognitive capitalism, Italian workerism, as well as emerging theories of antiwork to analyse these. It concludes by arguing that âradicalâ approaches to NEETs that point towards inequities embedded in the social structure and call for social democratic solutions veer towards a form of comfort radicalism. Such approaches leave in place the dominance of capitalist relations as well as productivist orientations that celebrate waged labour
Bulk vs. Boundary Dynamics in Anti-de Sitter Spacetime
We investigate the details of the bulk-boundary correspondence in Lorentzian
signature anti-de Sitter space. Operators in the boundary theory couple to
sources identified with the boundary values of non-normalizable bulk modes.
Such modes do not fluctuate and provide classical backgrounds on which bulk
excitations propagate. Normalizable modes in the bulk arise as a set of
saddlepoints of the action for a fixed boundary condition. They fluctuate and
describe the Hilbert space of physical states. We provide an explicit, complete
set of both types of modes for free scalar fields in global and Poincar\'e
coordinates. For \ads{3}, the normalizable and non-normalizable modes
originate in the possible representations of the isometry group
\SL_L\times\SL_R for a field of given mass. We discuss the group properties
of mode solutions in both global and Poincar\'e coordinates and their relation
to different expansions of operators on the cylinder and on the plane. Finally,
we discuss the extent to which the boundary theory is a useful description of
the bulk spacetime.Comment: Standard LaTeX, 28 pages, 2 postscript figures. v2: References added.
Substantial revision in section 3 of treatment of global modes;
non-normalizable modes have arbitrary time dependence. Revised discussion of
low-mass modes and puzzle raised re: coupling of the dual boundary operators.
v3: unwanted paragraph removed. v4: Sec. 5.2 correcte
- âŠ