17 research outputs found

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    Nowy sposób wytwarzania odlewów precyzyjnych ze stopu miedzi w formach ceramicznych

    Full text link
    W publikacji zaprezentowano wyniki badań odlewów wytwarzanych ze stopu miedzi (brązu aluminiowego, typu BA1044) wedługopracowanej w Instytucie Odlewnictwa w Krakowie technologii wykonywania odlewów precyzyjnych przy zastosowaniu kierunkowegokrzepnięcia [9]. Wstępnie pokazano zasadność nowoopracowanego w Polsce sposobu wytwarzania skomplikowanych konstrukcyjnie, azarazem wysokojakościowych (z uwagi na właściwości użytkowe) części maszyn, urządzeń i pojazdów ze stopów miedzi. Proponowanerozwiązanie jest innowacją nie tylko w skali kraju (Polski), ale również o zasięgu międzynarodowym

    The molecular diagnosis of rejection in liver transplant biopsies: First results of the INTERLIVER study

    Full text link
    Molecular diagnosis of rejection is emerging in kidney, heart, and lung transplant biopsies and could offer insights for liver transplant biopsies. We measured gene expression by microarrays in 235 liver transplant biopsies from 10 centers. Unsupervised archetypal analysis based on expression of previously annotated rejection-related transcripts identified four groups: normal \u27R1normal \u27 (N=129), T cell-mediated rejection (TCMR) \u27R2TCMR \u27 (N=37), early injury \u27R3injury \u27 (N=61), and fibrosis \u27R4late \u27 (N=8). Groups differed in median time post-transplant e.g. R3injury 99 days vs. R4late 3117 days. R2TCMR biopsies expressed typical TCMR-related transcripts e.g. intense IFNG-induced effects. R3injury displayed increased expression of parenchymal injury transcripts (e.g. hypoxia-inducible factor EGLN1). R4late biopsies showed immunoglobulin transcripts and injury-related transcripts. R2TCMR correlated with histologic rejection although with many discrepancies, and R4late with fibrosis. R2TCMR , R3injury , and R4late correlated with liver function abnormalities. Supervised classifiers trained on histologic rejection showed less agreement with histology than unsupervised R2TCMR scores. No confirmed cases of clinical ABMR were present in the population, and strategies that previously revealed antibody-mediated rejection (ABMR) in kidney and heart transplants failed to reveal a liver ABMR phenotype. In conclusion, molecular analysis of liver transplant biopsies detects rejection, has the potential to resolve ambiguities, and could assist with immunosuppressive management

    The molecular phenotypes of injury, steatohepatitis, and fibrosis in liver transplant biopsies in the INTERLIVER study

    Full text link
    To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. We analyzed genome-wide microarray measurements from 337 liver transplant biopsies from 13 centers. We examined expression of genes previously annotated as increased in injury and fibrosis using principal component analysis (PCA). PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC = 0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC = 0.80), as did a molecular fibrosis classifier (AUC = 0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases

    Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens.

    Full text link
    We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geospatial distribution of risk alleles is highly suggestive of multi-locus adaptation, and genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host–intestinal pathogen interactions in shaping the genetic landscape of IgAN
    corecore