2 research outputs found

    Detection and modelling of contacts in explicit finite-element simulation of soft tissue biomechanics

    Get PDF
    Realistic modelling of soft-tissue biomechanics and mechanical interactions between tissues is an important part of surgical simulation, and may become a valuable asset in surgical image-guidance. Unfortunately, it is also computationally very demanding. Explicit matrix-free FEM solvers have been shown to be a good choice for fast tissue simulation, however little work has been done on contact algorithms for such FEM solvers. This work introduces such an algorithm that is capable of handling the scenarios typically encountered in image-guidance. The responses are computed with an evolution of the Lagrange-multiplier method first used by Taylor and Flanagan in PRONTO 3D with spatio-temporal smoothing heuristics for improved stability with coarser meshes and larger time steps. For contact search, a bounding-volume hierarchy (BVH) capable of identifying self collisions, and which is optimised for the small time steps by reducing the number of bounding-volume refittings between iterations through identification of geometry areas with mostly rigid motion and negligible deformation, is introduced. Further optimisation is achieved by integrating the self-collision criterion in the BVH creation and updating algorithms. The effectiveness of the algorithm is demonstrated on a number of artificial test cases and meshes derived from medical image data

    A nonlinear biomechanical model based registration method for aligning prone and supine MR breast images

    No full text
    Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration performance on fiducial markers (target registration error, 8.44 ±5.5 mm for 45 fiducial markers) and higher overlap rates on segmentation propagation of fibroglandular tissues (DSC value > 82%)
    corecore