1,140 research outputs found

    Properties of the Nearly Free Electron Superconductor Ag5Pb2O6 Inferred from Fermi Surface Measurements

    Full text link
    We measured the Fermi surface of the recently discovered superconductor Ag5Pb2O6 via a de Haas-van Alphen rotation study. Two frequency branches were observed and identified with the neck and belly orbits of a very simple, nearly free electron Fermi surface. We use the observed Fermi surface geometry to quantitatively deduce superconducting properties such as the in-plane and out-of-plane penetration depths, the coherence length in the clean limit, and the critical field; as well as normal state properties such as the specific heat and the resistivity anisotropy.Comment: 2 pages, 1 figure, submitted to Physica C (M2S Proceedings

    Magnetism and superconductivity in McM_{c}Ta2_{2}S2_{2}C (M = Fe, Co, Ni, and Cu)

    Full text link
    Magnetic properties of McM_{c}Ta2_{2}S2_{2}C (MM = Fe, Co, Ni, Cu) have been studied using SQUID DC and AC magnetic susceptibility. In these systems magnetic M2+M^{2+} ions are intercalated into van der Waals gaps between adjacent S layers of host superconductor Ta2_{2}S2_{2}C. Fe0.33_{0.33}Ta2_{2}S2_{2}C is a quasi 2D XYXY-like antiferromagnet on the triangular lattice. It undergoes an antiferromagnetic phase transition at TNT_{N} (= 117 K). The irreversible effect of magnetization occurs below TNT_{N}, reflecting the frustrated nature of the system. The AF phase coexists with two superconducting phases with the transition temperatures Tcu=8.8T_{cu} = 8.8 K and Tcl=4.6T_{cl} = 4.6 K. Co0.33_{0.33}Ta2_{2}S2_{2}C is a quasi 2D Ising-like antiferromagnet on the triangular lattice. The antiferromagnetic phase below TN=18.6T_{N} = 18.6 K coexists with a superconducting phase below Tcu=9.1T_{cu} = 9.1 K. Both Ni0.25_{0.25}Ta2_{2}S2_{2}C and Cu0.60_{0.60}Ta2_{2}S2_{2}C are superconductors with TcuT_{cu} (=8.7= 8.7 K for Ni and 6.4 K for Cu) and TclT_{cl} (= 4.6 K common to McM_{c}Ta2_{2}S2_{2}C). Very small effective magnetic moments suggest that Ni2+^{2+} and Cu2+^{2+} spins are partially delocalized.Comment: 15 pages, 17 figures, and 3 table

    Density Matrix Renormalization Group Study of the Disorder Line in the Quantum ANNNI Model

    Full text link
    We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Size Scaling on lattices with up to 80 sites we locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder transition line where a modulation appears. We give strong numerical support to the conjecture that the Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical exponent governing the vanishing of the modulation parameter at the disorder transition is βq=1/2\beta_q = 1/2.Comment: 4 pages, 5 eps figure

    Fermiological Interpretation of Superconductivity/Non-superconductivity of FeTe_{1-x}Se_{x} Thin Crystal Determined by Quantum Oscillation Measurement

    Full text link
    We have successfully observed quantum oscillation (QO) for FeTe_{1-x}Se_{x}. QO measurements were performed using non-superconducting and superconducting thin crystals of FeTe_{0.65}Se_{0.35} fabricated by the scotch-tape method. We show that the Fermi surfaces (FS) of the non-superconducting crystal are in good agreement with the rigid band shift model based on electron doping by excess Fe while that of the superconducting crystal is in good agreement with the calculated FS with no shift. From the FS comparison of both crystals, we demonstrate the change of the cross-sectional area of the FS, suggesting that the suppression of the FS nesting with the vector Q_{s} = (\pi, \pi) due to excess Fe results in the disappearance of the superconductivity.Comment: 8 pages, 4 figure

    Direct Observation of Nonequivalent Fermi-Arc States of Opposite Surfaces in Noncentrosymmetric Weyl Semimetal NbP

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on noncentrosymmetric Weyl semimetal candidate NbP, and determined the electronic states of both Nb- and P-terminated surfaces corresponding to the "opposite" surfaces of a polar crystal. We revealed a drastic difference in the Fermi-surface topology between the opposite surfaces, whereas the Fermi arcs on both surfaces are likely terminated at the surface projection of the same bulk Weyl nodes. Comparison of the ARPES data with our first-principles band calculations suggests notable difference in electronic structure at the Nb-terminated surface between theory and experiment. The present result opens a platform for realizing exotic quantum phenomena arising from unusual surface properties of Weyl semimetals.Comment: 5 pages, 4 figure
    corecore