547 research outputs found

    XMM-Newton observation of MV Lyr and the sandwiched model confirmation

    Full text link
    We present spectral and timing analyses of simultaneous X-ray and UV observations of the VY Scl system MV Lyr taken by XMM-Newton, containing the longest continuous X-ray+UV light curve and highest signal-to-noise X-ray (EPIC) spectrum to date. The RGS spectrum displays emission lines plus continuum, confirming model approaches to be based on thermal plasma models. We test the sandwiched model based on fast variability that predicts a geometrically thick corona that surrounds an inner geometrically thin disc. The EPIC spectra are consistent with either a cooling flow model or a 2-T collisional plasma plus Fe emission lines in which the hotter component may be partially absorbed which would then originate in a central corona or a partially obscured boundary layer, respectively. The cooling flow model yields a lower mass accretion rate than expected during the bright state, suggesting an evaporated plasma with a low density, thus consistent with a corona. Timing analysis confirms the presence of a dominant break frequency around log(f/Hz) = -3 in the X-ray Power Density Spectrum (PDS) as in the optical PDS. The complex soft/hard X-ray light curve behaviour is consistent with a region close to the white dwarf where the hot component is generated. The soft component can be connected to an extended region. We find another break frequency around log(f/Hz) = -3.4 that is also detected by Kepler. We compared flares at different wavelengths and found that the peaks are simultaneous but the rise to maximum is delayed in X-rays with respect to UV.Comment: 17 pages, 21 figures, 4 tables, Accepted for publication in MNRA

    The puzzling symbiotic X-ray system 4U1700+24

    Full text link
    Symbiotic X-ray binaries form a subclass of low-mass X-ray binary systems consisting of a neutron star accreting material from a red giant donor star via stellar wind or Roche lobe overflow. Only a few confirmed members are currently known; 4U 1700+24 is a good candidate as it is a relatively bright X-ray object, possibly associated with the late-type star V934 Her. We analysed the archive {\it XMM}-Newton and Swift/XRT observations of 4U 1700+24 in order to have a uniform high-energy (0.3−100.3-10 keV) view of the source. We confirmed the existence of a red-shifted O VIII Ly-α\alpha transition (already observed in the 2002 {\it XMM}-Newton data) in the high-resolution spectra collected via the RGS instruments. The red-shift of the line is found in all the analysed observations and, on average, it was estimated to be ≃0.009\simeq 0.009. We also observed a modulation of the centroid energy of the line on short time scales (a few days) and discuss the observations in the framework of different scenarios. If the modulation is due to the gravitational red-shift of the neutron star, it might arise from a sudden re-organization of the emitting XX-ray matter on the scale of a few hundreds of km. Alternatively, we are witnessing a uni-polar jet of matter (with typical velocity of 1000−40001000-4000 km s−1^{-1}) possibly emitted by the neutron star in an almost face-on system. The second possibility seems to be required by the apparent lack of any modulation in the observed XX-ray light curve. We also note also that the low-resolution spectra (both {\it XMM}-Newton and Swift/XRT in the 0.3−100.3-10 keV band) show the existence of a black body radiation emitted by a region (possibly associated with the neutron star polar cap) with typical size from a few tens to hundreds of meters. The size of this spot-like region reduces as the overall luminosity of 4U 1700+24 decreases.Comment: In press on A&

    Gravitational wave scintillation by a stellar cluster

    Get PDF
    The diffraction effects on gravitational waves propagating through a stellar cluster are analyzed in the relevant approximation of Fresnel diffraction limit. We find that a gravitational wave scintillation effect - similar to the radio source scintillation effect - comes out naturally, implying that the gravitational wave intensity changes in a characteristic way as the observer moves.Comment: 9 pages, in press in IJMP

    XMM observation of 1RXS J180431.1-273932: a new M-type X-ray binary with a 494 s-pulse period neutron star?

    Full text link
    Low-mass X-ray binaries are binary systems composed of a compact object and a low-mass star. Recently, a new class of these systems, known as symbiotic XX-ray binaries (with a neutron star with a M-type giant companion), has been discovered. Here, we present long-duration XMM{\it XMM} observations of the source 1RXS J180431.1-273932. Temporal and spectral analysis of the source was performed along with a search for an optical counterpart. We used a Lomb-Scargle periodogram analysis for the period search and evaluated the confidence level using Monte-Carlo simulations. The source is characterized by regular pulses so that it is most likely a neutron star. A modulation of 494.1±0.2494.1\pm0.2 s (3σ\sigma error) was found with a confidence level of >>99%. Evidence of variability is also present, since the data show a rate of change in the signal of ∼−7.7×10−4\sim -7.7\times 10^{-4} counts s−1^{-1} hr−1^{-1}. A longer observation will be necessary in order to determine if the source shows any periodic behavior. The spectrum can be described by a power law with photon index Γ∼1\Gamma\sim 1 and a Gaussian line at 6.6 keV. The X-ray flux in the 0.2--10 keV energy band is 5.4×10−125.4\times 10^{-12} erg s−1^{-1} cm−2^{-2}. The identification of an optical counterpart (possibly an M6III red-giant star with an apparent visual magnitude of ≃17.6\simeq 17.6) allows a conservative distance of ∼10\sim 10 kpc to be estimated. Other possibilities are also discussed. Once the distance was estimated, we got an XX-ray luminosity of L_X\ut<6\times 10^{34} erg s−1^{-1}, which is consistent with the typical XX-ray luminosity of a symbiotic LMXB system.Comment: in press on A&

    Messier 81's Planck view vs its halo mapping

    Full text link
    This paper is a follow-up of a previous paper about the M82 galaxy and its halo based on Planck observations. As in the case of M82, so also for the M81 galaxy a substantial North-South and East-West temperature asymmetry is found, extending up to galactocentric distances of about 1.5∘1.5^\circ. The temperature asymmetry is almost frequency independent and can be interpreted as a Doppler-induced effect related to the M81 halo rotation and/or triggered by the gravitational interaction of the galaxies within the M81 Group. Along with the analogous study of several nearby edge-on spiral galaxies, the CMB temperature asymmetry method thus is shown to act as a direct tool to map the galactic haloes and/or the intergalactic bridges, invisible in other bands or by other methods.Comment: 5 pages, 3 figures, in press in Astronomy and Astrophysics, Main Journa

    Planck view of the M82 galaxy

    Full text link
    Planck data towards the galaxy M82 are analyzed in the 70, 100 and 143 GHz bands. A substantial north-south and East-West temperature asymmetry is found, extending up to 1 degree from the galactic center. Being almost frequency-independent, these temperature asymmetries are indicative of a Doppler-induced effect regarding the line-of-sight dynamics on the halo scale, the ejections from the galactic center and, possibly, even the tidal interaction with M81 galaxy. The temperature asymmetry thus acts as a model-independent tool to reveal the bulk dynamics in nearby edge-on spiral galaxies, like the Sunyaev-Zeldovich effect for clusters of galaxies.Comment: 4 pages, 3 figures, in press on A&

    Planck revealed bulk motion of Centaurus A lobes

    Full text link
    Planck data towards the active galaxy Centaurus A are analyzed in the 70, 100 and 143 GHz bands. We find a temperature asymmetry of the northern radio lobe with respect to the southern one that clearly extends at least up to 5 degrees from the Cen A center and diminishes towards the outer regions of the lobes. That transparent parameter - the temperature asymmetry - thus has to carry a principal information, i.e. indication on the line-of-sight bulk motion of the lobes, while the increase of that asymmetry at smaller radii reveals the differential dynamics of the lobes as expected at ejections from the center.Comment: 4 pages, 3 figures, Astronomy & Astrophysics, Letter to the Editor (in press

    Apoastron Shift Constraints on Dark Matter Distribution at the Galactic Center

    Full text link
    The existence of dark matter (DM) at scales of few pc down to ≃10−5\simeq 10^{-5} pc around the centers of galaxies and in particular in the Galactic Center region has been considered in the literature. Under the assumption that such a DM clump, principally constituted by non-baryonic matter (like WIMPs) does exist at the center of our galaxy, the study of the γ\gamma-ray emission from the Galactic Center region allows us to constrain both the mass and the size of this DM sphere. Further constraints on the DM distribution parameters may be derived by observations of bright infrared stars around the Galactic Center. Hall and Gondolo \cite{hallgondolo} used estimates of the enclosed mass obtained in various ways and tabulated by Ghez et al. \cite{Ghez_2003,Ghez_2005}. Moreover, if a DM cusp does exist around the Galactic Center it could modify the trajectories of stars moving around it in a sensible way depending on the DM mass distribution. Here, we discuss the constraints that can be obtained with the orbit analysis of stars (as S2 and S16) moving inside the DM concentration with present and next generations of large telescopes. In particular, consideration of the S2 star apoastron shift may allow improving limits on the DM mass and size.Comment: in press on Phys. Rev.
    • …
    corecore